精英家教网 > 高中数学 > 题目详情
17.某奶茶店的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间的关系如下:
x-2-1012
y5221
通过上面的五组数据得到了x与y之间的线性回归方程:$\stackrel{∧}{y}$=-x+2.8;但现在丢失了一个数据,该数据应为(  )
A.3B.4C.5D.2

分析 求出$\overline{x}$的值,代入方程,求出$\widehat{y}$的值,从而求出丢失了的数据.

解答 解:设该数据是a,
$\overline{x}$=0,故$\stackrel{∧}{y}$=-x+2.8=2.8,
∴$\frac{1}{5}$(5+a+2+2+1)=2.8,
解得:a=4,
故选:B.

点评 本题考查了线性回归方程,考查数据样本中心点,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{1}{2}-{cos^2}x+\sqrt{3}sinxcosx$.
(1)求f(x)单调递减区间;
(2)△ABC中,角A,B,C的对边a,b,c满足b2+c2-a2>bc,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x5+2x4+x3-x2+3x-5,用秦九韶算法计算,当x=5时,V3=(  )
A.27B.36C.54D.179

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.①两条平行直线L1 L2分别过P(-1,3),Q(2,-1)它们分别绕P、Q旋转,但始终保  持平行,则L1与L2之间的距离d的取值范围是(0,4) 
②x2+y2-2x-4y+6=0表示一个圆的方程.
③过点(-2,-3)且在两坐标轴上的截距相等的直线l的方程为x+y=5.
④直线ax+by+1=0被圆x2+y2-2ax+a=0截得的弦长为2,则实数a的值为-2.
其中错误的命题是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲乙两人有三个不同的学习小组A,B,C可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加不同小组的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$\underset{lim}{n→∞}$$\frac{2n+3}{n+1}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(0,3)$,则$\overrightarrow b$在$\overrightarrow a$的方向上的投影为$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知x,y∈R+,且x+2y=1,则x•y的最大值为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设双曲线C:$\frac{x^2}{2}-\frac{y^2}{3}=1$,F1,F2为其左右两个焦点.
(1)设O为坐标原点,M为双曲线C右支上任意一点,求$\overrightarrow{OM}•\overrightarrow{{F_1}M}$的取值范围;
(2)若动点P与双曲线C的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为$-\frac{1}{9}$,求动点P的轨迹方程.

查看答案和解析>>

同步练习册答案