精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,侧棱与底面垂直,∠BAC=90°,AB=AC=AA1=2,点M,N分别为A1B和B1C1的中点.
(1)证明:A1M⊥平面MAC;
(2)求三棱锥A-CMA1的体积;
(3)证明:MN∥平面A1ACC1
分析:(1)证法一:由题设知,AC⊥AA1,由∠BAC=90°,知AC⊥ABAA1,由AB?平面AA1BB1,知AC⊥平面AA1BB1,由此能够证明A1M⊥平面MAC.
证法二:先证明△A1CB为等腰三角形,再由点M为A1B的中点,知A1M⊥MC,由此能够证明A1M⊥平面MAC.
(2)由三棱锥A-CMA1的体积VA-CMA1=VC-AMA1=
1
3
×S△AMA1×CA
,能够求出结果.
(3)证法一:连接AB1,AC1,得MN∥AC1,由此能够证明MN∥平面A1ACC1
证法二:取A1B1中点P,连MP,NP,得MP∥AA1,由此能够证明MN∥平面A1ACC1
解答:解:(1)证法一:由题设知,AC⊥AA1
又∵∠BAC=90°∴AC⊥ABAA1,AB?平面AA1BB1,AA1∩AB=A,
∴AC⊥平面AA1BB1,…(1分)
A1M?平面AA1BB1∴A1M⊥AC.…(2分)
又∵四边形AA1BB1为正方形,M为A1B的中点,
∴A1M⊥MA…(3分)
AC∩MA=A,AC?平面MAC,MA?平面MAC…(4分)
∴A1M⊥平面MAC…(5分)
证法二:在Rt△BAC中,BC=
AB2+AC2
=
22+22
=2
2

在Rt△A1AC中,A1C=
A1A2+AC2
=
22+22
=2
2

∴BC=A1C,
即△A1CB为等腰三角形.…(1分)
又点M为A1B的中点,∴A1M⊥MC.…(2分)
又∵四边形AA1BB1为正方形,M为A1B的中点,
∴A1M⊥MA…(3分)AC∩MA=A,AC?平面MAC,MA?平面MAC…(4分)
∴A1M⊥平面MAC…(5分)
(2)由(1)的证明可得:
三棱锥A-CMA1的体积VA-CMA1=VC-AMA1=
1
3
×S△AMA1×CA
…(7分)=
1
3
×
1
2
×2×1×2
…(8分)
=
2
3
.…(9分)
(3)证法一:连接AB1,AC1,…(10分)
由题意知,点M,N分别为AB1和B1C1的中点,∴MN∥AC1.…(11分)
又MN?平面A1ACC1,AC1?平面A1ACC1,…(13分)
∴MN∥平面A1ACC1.…(14分)
证法二:取A1B1中点P,连MP,NP,…(10分)
而M,P分别为AB1与A1B1的中点,
∴MP∥AA1,MP?平面A1ACC1,AA1?平面A1ACC1
∴MP∥平面A1ACC1
同理可证NP∥平面A1ACC1…(11分)
又MP∩NP=P∴平面MNP∥平面A1ACC1.…(12分)
∵MN?平面MNP,…(13分)
∴MN∥平面A1ACC1.…(14分)
点评:本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A'B'C'中,若E、F分别为AB、AC的中点,平面EB'C'F将三棱柱分成体积为V1、V2的两部分,那么V1:V2为(  )
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,则此三棱柱的侧视图的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,四边形A1ABB1为菱形,∠A1AB=60°,四边形BCC1B1为矩形,若AB⊥BC且AB=4,BC=3
(1)求证:平面A1CB⊥平面ACB1
(2)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若N是AB上一点,且
AN
AB
=
CM
CC1
,求证:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分别在线段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1
(2)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.

查看答案和解析>>

同步练习册答案