精英家教网 > 高中数学 > 题目详情
14.已知{an}是等差数列,Sn为其前n项和,则下列结论一定成立的是(  )
A.a1a8≤a2a7B.a1a8≥a2a7C.S1S8<S2S7D.S1S8≥S2S7

分析 对A.B.C.D.利用等差数列的通项公式与求和公式分别作差,即可判断出结论.

解答 解:对于A.a1a8-a2a7=a1(a1+7d)-(a1+d)(a1+6d)=-6d2≤0,∴a1a8≤a2a7,因此正确.
B.由A可知B不一定成立.
C.S1S8-S2S7=${a}_{1}(8{a}_{1}+\frac{8×7}{2}d)$-(2a1+d)$(7{a}_{1}+\frac{7×6}{2}d)$=-$21(d+\frac{{a}_{1}}{2})^{2}$-$\frac{3}{4}{a}_{1}^{2}$≤0,∴S1S8≤S2S7,故C不一定正确.
D.由C可知D不正确.
故选:A.

点评 本题考查了等差数列的通项公式与求和公式、作差法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设m,n为实数,则“mn>0”是“曲线$\frac{x^2}{m}-\frac{y^2}{n}$=1为双曲线”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的导函数为f′(x),对?x∈R,f′(x)>f(x)都有成立,若f(1)=e,则不等式f(x)>ex的解是(  )
A.x>ln4B.0<x<ln4C.x>1D.0<x<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在等差数列{an}中,a1=1,前5项之和等于15.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,记数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy,直线l的参数方程是$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数).在以O为极点,x轴正半轴为极轴建立极坐标系中,曲线C:ρ=4sinθ.
(1)当m=-1,α=30°时,判断直线l与曲线C的位置关系;
(2)当m=1时,若直线与曲l线C相交于A,B两点,设P(1,0),且||PA|-|PB||=1,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,若该几何体的体积为$\frac{2π}{3}$,则a的值为(  )
A.1B.2C.2$\sqrt{2}$D.$\root{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a∈R,直线l:x+ay+a-2=0,圆M:(x-1)2+(y-1)2=1,则“a=0”是“直线l与圆M相切”的(  )
A.充分不必要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-2x+1,g(x)=2aln(x-1)(a∈R).
(1)求函数h(x)=f(x)-g(x)的极值;
(2)当a>0时,若存在实数k,m使得不等式g(x)≤kx+m≤f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知tanx=2,则$\frac{3sinx+cosx}{cosx-3sinx}$的值为-$\frac{7}{5}$.

查看答案和解析>>

同步练习册答案