精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使
∠BDC=90°.
(1)若E,F分别为 AB,AC的中点,求证:EF∥平面BDC;
(2)证明:平面ADB⊥平面BDC;
(3 )设BD=1,求三棱锥D﹣ABC的表面积.
解:(1)在右图中,因为△ABC中,E、F分别为 AB、AC的中点,.
∴EF∥BC
∵EF平面BDC,BC平面BDC,
∴EF∥平面BDC;
(2)∵左图中,AD是等腰Rt△ABC斜边BC的中线
∴CD⊥AD,在右图中依然成立
又∵右图中,CD⊥BD,AD、BD是平面ABD内的相交直线
∴CD⊥平面ADB
∵CD平面BDC,
∴平面ADB⊥平面BDC;
(3)由(2)知,AD、BD、CD两两垂直
∵BD=1,
∴AD=BD=CD=1
∴三角形ADC的面积S△ADC×AD×CD= ,
同理可得S△BDC=S△ABD
∵Rt△ADC中,AC= ,
同理可得AB=BC= 
∴△ABC是边长为 的等边三角形,
面积为S△ABC= = 
由此可得三棱锥D﹣ABC的表面积为:S△ADC+S△BDC+S△ABD+S△ABC= .  
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案