精英家教网 > 高中数学 > 题目详情
3.给出下列四个命题:
①设x1,x2∈R,则x1>1且x2>1的充要条件是x1+x2>2且x1x2>1;
②“α=$\frac{π}{6}$”是“sinα=$\frac{1}{2}$”的充分而不必要条件;
③命题“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;
④已知n个散点Ai(xi,yi)(i=1,2,3,…,n)的线性回归方程为y=bx+a,若a=$\overline{y}$-b$\overline{x}$,(其中$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\sum_{i=1}^{n}$yi),则此回归直线必经过点($\overline{x}$,$\overline{y}$).
其中正确命题的序号是(  )
A.①②B.②③C.②④D.①④

分析 ①根据不等式的关系结合充分条件和必要条件的定义进行判断,
②根据充分条件和必要条件的定义进行判断,
③根据全称命题的否定是特称命题进行判断,
④根据线性回归直线的性质进行判断.

解答 解:①若x1>1且x2>1,则x1+x2>2且x1x2>1成立,即充分性成立,
当x1=8且x2=$\frac{1}{2}$满足x1+x2>2且x1x2>1成立,但x1>1且x2>1不成立,即必要性不成立,
即x1,x2∈R,则x1>1且x2>1的充要条件是x1+x2>2且x1x2>1;错误,
②当α=$\frac{π}{6}$时,sinα=$\frac{1}{2}$成立,当α=$\frac{5π}{6}$时,满足sinα=$\frac{1}{2}$”但α=$\frac{π}{6}$不成立,
即“α=$\frac{π}{6}$”是“sinα=$\frac{1}{2}$”的充分而不必要条件;故②正确,
③命题“?x∈R,x2≥0”的否定是“?x∈R,x2<0”;故③错误,
④已知n个散点Ai(xi,yi)(i=1,2,3,…,n)的线性回归方程为y=bx+a,若a=$\overline{y}$-b$\overline{x}$,(其中$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\sum_{i=1}^{n}$yi),则此回归直线必经过点($\overline{x}$,$\overline{y}$).正确,
故选:C

点评 本题主要考查命题的真假判断,涉及充分条件和必要条件的判断,含有量词的命题的否定以及回归直线的性质,涉及的知识点较多,综合性较强,但难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在半径为$\sqrt{3}$,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,∠POB=θ.
(Ⅰ)将y表示成θ的函数关系式,并写出定义域;
(Ⅱ)求矩形PNMQ的面积取得最大值时$\overrightarrow{OP}$•$\overrightarrow{ON}$的值;
(Ⅲ)求矩形PNMQ的面积y≥$\frac{\sqrt{6}-\sqrt{3}}{2}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)•(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”表示把红球和蓝球都取出来,以此类推,下列各式中,其展开式可用来表示从3个无区别的红球、3个无区别的蓝球、2个有区别的黑球中取出若干个球,且所有蓝球都取出或都不取出的所有取法的是①
①(1+a+a2+a3)(1+b3)(1+c)2
②(1+a3)(1+b+b2+b3)(1+c)2
③(1+a)3(1+b+b2+b3)(1+c2
④(1+a3)(1+b)3(1+c+c2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}中,a1=1,an+1=$\frac{a_n}{{1+{a_n}}}$(n=1,2,3,…)计算该数列的前几项,猜想它的通项公式是(  )
A.${a_n}=\frac{1}{n}$B.an=nC.${a_n}={n^2}$D.${a_n}=\frac{1}{2n-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在区间[-1,4]上随机选取一个数X,则X≤1的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求分别满足下列条件的直线方程:
(1)直线l1过点A(-1,2)且与直线2x-3y+4=0垂直;
(2)直线l2过点A(1,3),且斜率是直线y=-4x的斜率的$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.矩形ABCD中,AB=1,BC=$\sqrt{3}$,将矩形沿对角线AC折起,使B点与P点重合,点P在平面ACD内的射影M正好在AD上.
(Ⅰ)求证CD⊥PA;
(Ⅱ)求二面角P-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知过点M($\frac{p}{2}$,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,O为坐标原点,且满足$\overrightarrow{OA}$•$\overrightarrow{OB}$=-3,则当|AM|+4|BM|最小时,|AB|=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知二次函数f(x)=x2+bx+c(其中b,c为实常数).
(Ⅰ)若b>2,且y=f(sinx)(x∈R)的最大值为5,最小值为-1,求函数y=f(x)的解析式;
(Ⅱ)是否存在这样的函数y=f(x),使得{y|y=x2+bx+c,-1≤x≤0}=[-1,0],若存在,求出函数y=f(x)的解析式;若不存在,请说明理由.
(Ⅲ)记集合A={x|f(x)=x,x∈R},B={x|f(f(x))=x,x∈R}.
①若A≠∅,求证:B≠∅;
②若A=∅,判断B是否也为空集.

查看答案和解析>>

同步练习册答案