精英家教网 > 高中数学 > 题目详情
如图所示,F1和F2分别是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点,A和B是以O为圆心,|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则离心率为(  )
A.
5
-1
B.
3
+1
2
C.
3
+1
D.
5
+1
2

连接AF1,则∠F1AF2=90°,∠AF2B=60°
∴|AF1|=c,|AF2|=
3
c
3
c-c=2a
e=
c
a
=
2
3
-1
=
3
+1

故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦点为F,右准线l与两条渐近线交于P,Q两点,如果△PQF是等边三角形,则双曲线的离心率e的值为(  )
A.
1
2
B.
3
2
C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线
x2
9
-
y2
4
=1
的渐近线方程是(  )
A.y=±
2
3
x
B.y=±
3
2
x
C.y=±
4
9
x
D.y=±
9
4
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线
x2
m
-y2=1
的一条渐近线和圆x2+y2-4x+3=0相切,则该双曲线的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线
x2
4
-
y2
25
=1的渐近线方程是(  )
A.y=±
25
4
x
B.y=±
4
25
x
C.y=±
5
2
x
D.y=±
2
5
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆和双曲线
y2
16
-
x2
m
=1(m>0)有相同的焦点,P(3,4)是椭圆和双曲线渐近线的一个交点,求m的值及椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点P是双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)
与圆C2:x2+y2=a2+b2的一个交点,且2∠PF1F2=∠PF2F1,其中F1、F2分别为双曲线C1的左右焦点,则双曲线C1的离心率为(  )
A.
3
+1
B.
3
+1
2
C.
5
+1
2
D.
5
-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线
x2
a2
-
y2
b2
=1(a,b>0)
的离心率e=2,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)满足(  )
A.必在圆x2+y2=2内B.必在圆x2+y2=2外
C.必在圆x2+y2=2上D.以上三种情形都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线
x2
10
-
y2
6
=1的焦点坐标是(  )
A.(-2,0),(2,0)B.(0,-2),(0,2)C.(0,-4),(0,4)D.(-4,0),(4,0)

查看答案和解析>>

同步练习册答案