【题目】某城镇社区为了丰富辖区内广大居民的业余文化生活,创建了社区“文化丹青”大型活动场所,配备了各种文化娱乐活动所需要的设施,让广大居民健康生活、积极向上.社区最近四年内在“文化丹青”上的投资金额统计数据如表:(为了便于计算,把2015年简记为5,其余以此类推)
年份(年) | 5 | 6 | 7 | 8 |
投资金额(万元) | 15 | 17 | 21 | 27 |
(1)利用所给数据,求出投资金额与年份之间的回归直线方程;
(2)预测该社区在2019年在“文化丹青”上的投资金额.
(附:对于一组数据, ,…, ,其回归直线的斜率和截距的最小二乘估计分别为, .)
科目:高中数学 来源: 题型:
【题目】已知等差数列的公差d>0,则下列四个命题:
①数列是递增数列; ②数列是递增数列;
③数列是递增数列; ④数列是递增数列.
其中正确命题的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为内一点,若分别满足①;②;③;④(其中为中,角所对的边).则O依次是的( )
A.内心、重心、垂心、外心B.外心、垂心、重心、内心
C.外心、内心、重心、垂心D.内心、垂心、外心、重心
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点.(1)若为椭圆上两点,且线段的中点为,求直线的斜率;
(2)若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于和,设线段的长分别为,证明是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等比数列{an}的公比为q,其前n项之积为Tn,并且满足条件:a1>1,a2 016a2 017>1, .给出下列结论:(1)0<q<1;(2)a2 016a2 018-1>0;(3)T2 016是数列{Tn}中的最大项;(4)使Tn>1成立的最大正整数n为4 031.其中正确的结论为( )
A. (2)(3) B. (1)(3)
C. (1)(4) D. (2)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…,该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列称为斐波那契数列. 并将数列中的各项除以4所得余数按原顺序构成的数列记为,则下列结论正确的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列满足:,,.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论正确的是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com