精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)判断的单调性并写出证明过程;

2)当时,关于x的方程在区间上有唯一实数解,求a的取值范围.

【答案】1R上递增,证明见解析;(2.

【解析】

1)先判断函数的奇偶性,再根据函数单调性的定义,作差比较大小即可求证明;

2)根据(1)中所求单调性,将问题转化为的零点问题,利用之间的关系进行换元,转化为二次函数零点的分布问题即可求得.

1R上递增.

证明:恒成立,的定义域为R.

是奇函数.

上递增,又R上连续不断的奇函数,

R上递增.

2)由(1)得

R上递增.

整理得,在上有唯一实数解

构造.

,则

内有且只有一个零点,无零点.

上为增函数.

)若内有且只有一个零点,无零点.

)若的零点,无零点,

,经检验符合题意.

综上所述:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用,

据市场分析,每辆单车的营运累计利润y单位:元)与营运天数x满足函数关系

.

1)要使营运累计利润高于800元,求营运天数的取值范围;

2)每辆单车营运多少天时,才能使每天的平均营运利润的值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求的单调区间和极值.

)若对于任意,都有成立,求的取值范围 ;

)若证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.

(Ⅰ)将曲线的直角坐标方程化为极坐标方程;

(Ⅱ)设点的直角坐标为,直线与曲线的交点为,求的取值范围.

【答案】I;(II.

【解析】试题分析:(Ⅰ)将由代入,化简即可得到曲线的极坐标方程;(Ⅱ)将的参数方程代入,得,根据直线参数方程的几何意义,利用韦达定理结合辅助角公式,由三角函数的有界性可得结果.

试题解析:(Ⅰ)由,得,即

所以曲线的极坐标方程为

II)将的参数方程代入,得

, 所以,又

所以,且,

所以,

,得,所以.

的取值范围是.

型】解答
束】
23

【题目】已知均为正实数.

(Ⅰ)若,求证:

(Ⅱ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆焦点在轴上,且椭圆个顶点构成的四边形面积为,过点的直线与椭圆相交于不同的两点.

(1)求椭圆的方程;

(2)设为椭圆上一点,且为坐标原点).求当时,实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城镇社区为了丰富辖区内广大居民的业余文化生活,创建了社区“文化丹青”大型活动场所,配备了各种文化娱乐活动所需要的设施,让广大居民健康生活、积极向上.社区最近四年内在“文化丹青”上的投资金额统计数据如表:(为了便于计算,把2015年简记为5,其余以此类推)

年份(年)

5

6

7

8

投资金额(万元)

15

17

21

27

(1)利用所给数据,求出投资金额与年份之间的回归直线方程

(2)预测该社区在2019年在“文化丹青”上的投资金额.

(附:对于一组数据 ,…, ,其回归直线的斜率和截距的最小二乘估计分别为 .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示(把频率当作概率).

(1)求甲、乙两人成绩的平均数和中位数;

(2)现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?

查看答案和解析>>

同步练习册答案