【题目】已知椭圆
的离心率为
分别为左右焦点,
是椭圆
上点,且
.
(1)求椭圆
的方程;
(2)过
的直线
与椭圆
交于不同的两点
,则
的内切圆的面积是否存在最大值?若存在,求出这个最大值以及此时的直线方程;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中,已知曲线C:
(
为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,
(1)求曲线C的极坐标方程,若A,B为曲线C上的两点,证明当
时,
定值;
(2)若过点
且倾斜角为
的直线l与曲线C相交于A,B两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
x2-(a+1)x+alnx+1
(Ⅰ)若x=3是f(x)的极值点,求f(x)的极大值;
(Ⅱ)求a的范围,使得f(x)≥1恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,等腰梯形
中,
,
是
的中点.将
沿
折起后如图2,使二面角
成直二面角,设
是
的中点,
是棱
的中
点.
![]()
(1)求证:
;
(2)求证:平面
平面
;
(3)判断
能否垂直于平面
,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有15个省三好学生名额分给1、2、3、4共四个班级,其中1班至少2个名额,2班、4班每班至少3个名额,3班最多2个名额,则共有_________种不同分配方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)
为曲线
上的动点,点
在线段
上,且满足
,求点
的轨迹
的直角坐标方程;
(2)设点
的极坐标为
,点
在曲线
上,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
(
)的离心率是
,
,
分别为椭圆E的左右顶点,B为上顶点,
的面积为2.直线l过点
且与椭圆E交于P,Q两点(P,Q异于
,
)
(1)求椭圆E的标准方程;
(2)求
的面积最大值;
(3)设直线
与直线
的斜率分别为
,
,求证:
为常数,并求出这个常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过双曲线
的左焦点
作圆
的切线交双曲线的右支于点
,且切点为
,已知
为坐标原点,
为线段
的中点(
点在切点
的右侧),若
的周长为
,则双曲线的渐近线的方程为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com