精英家教网 > 高中数学 > 题目详情

【题目】如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的外接球的体积为( )

A. B. C. D.

【答案】B

【解析】

根据几何体的三视图,可以得出该几何体是直三棱柱,且上下两底面是等腰直角三角形,侧棱长为4,底面等腰直角三角形的腰长为4,找出球心的位置,求出球的半径,从而得出三棱柱外接球的体积.

解:根据几何体的三视图,可以得出该几何体是直三棱柱,如图所示,

其中四边形、四边形均是边长为4的正方形,

三角形、三角形的等腰直角三角形,

的外接圆圆心为,故即为的中点,

的外接圆圆心为,故即为的中点,

设球的球心为

因为三棱柱的为直三棱柱,

所以球的球心的中点,且直线与上、下底面垂直,

连接,外接球的半径即为线段的长,

所以在中,

,即球的半径为

所以球的体积为,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆为左右焦点,为短轴端点,长轴长为4,焦距为,且,的面积为.

(Ⅰ)求椭圆的方程

(Ⅱ)设动直线椭圆有且仅有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在求出点的坐标,若不存在.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点务极点,轴正半轴为极轴建立极坐标系,曲线

(1)求曲线的直角坐标方程;

(2)曲线的交点为,求以为直径的圆与轴的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,.现沿对角线折起,使点到达点.点分别在上,且四点共面.

(1)求证:

(2)若平面平面,平面与平面夹角为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数aR

(Ⅰ)当a=1时,求曲线y=fx)在点(0f0))处的切线方程;

(Ⅱ)求fx)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为 为参数),过点且倾斜角为的直线与曲线交于两点.

(1)求的取值范围;

(2)求中点的轨迹的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中,四边形为菱形,且的中点.

(1)求证:平面

(2)若平面平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x-1(a∈R),若对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),则实数a的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的左右顶点分别为,,为坐标原点,且.

(1)求椭圆的标准方程;

(2)若点为直线在第一象限内的一点,连接交椭圆于点,连接并延长交椭圆于点.若直线的斜率为1,求点的坐标.

查看答案和解析>>

同步练习册答案