【题目】如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的外接球的体积为( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】设椭圆为左右焦点,为短轴端点,长轴长为4,焦距为,且,的面积为.
(Ⅰ)求椭圆的方程
(Ⅱ)设动直线椭圆有且仅有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在求出点的坐标,若不存在.请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点务极点,轴正半轴为极轴建立极坐标系,曲线,
(1)求曲线,的直角坐标方程;
(2)曲线和的交点为,,求以为直径的圆与轴的交点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行四边形中,,.现沿对角线将折起,使点到达点.点、分别在、上,且、、、四点共面.
(1)求证:;
(2)若平面平面,平面与平面夹角为,求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为 为参数),过点且倾斜角为的直线与曲线交于两点.
(1)求的取值范围;
(2)求中点的轨迹的参数方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x-1,(a∈R),若对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),则实数a的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左右顶点分别为,,为坐标原点,且.
(1)求椭圆的标准方程;
(2)若点为直线在第一象限内的一点,连接交椭圆于点,连接并延长交椭圆于点.若直线的斜率为1,求点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com