精英家教网 > 高中数学 > 题目详情

【题目】已知函数aR

(Ⅰ)当a=1时,求曲线y=fx)在点(0f0))处的切线方程;

(Ⅱ)求fx)的单调区间.

【答案】(Ⅰ)y=0(Ⅱ)单调递减区间为(-1-),单调递增区间为(-∞,-1),(-+∞)

【解析】

(Ⅰ)当时,求出函数,利用导数的几何意义求出处的切线的斜率,利用点斜式求出切线方程;(II)当时,令,得分三种情况①②当③当,讨论的单调区间.

(Ⅰ)fx)的定义域为R

a=1时,f′(0=0f0=0

所以曲线y=fx)在点(0f0))处的切线方程为y=0

(Ⅱ)f′(x=aexx+1-x-1=x+1)(aex-1).

1)当a≤0时,aex-10

所以当x-1时,f′(x)<0;当x-1时,f′(x)>0

所以fx)的单调递增区间为(-∞,-1),单调递减区间为(-1,+∞).

2)当a0时,令f′(x=0,得x1=-1x2=-lna

①当-lna=-1,即a=e时,f′(x)≥0,

所以fx)的单调递增区间为(-∞,+∞),无单调递减区间;

②当-lna-1,即ae时,

-lnax-1时,f′(x)<0;当x-lnax-1时,f′(x)>0

所以fx)的单调递减区间为(-lna-1),单调递增区间为(-∞,-lna),(-1,+∞);

③当-lna-1,即0ae时,

-1x-lna时,f′(x)<0;当x-1x-lna时,f′(x)>0

所以fx)的单调递减区间为(-1-lna),单调递增区间为(-∞,-1),(-lna,∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求在点处的切线方程;

(Ⅱ)若,求函数的单调区间;

(Ⅲ)若对任意的上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,二面角的中点,点上,且

1)求证:四边形为直角梯形;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在下列三个正方体中,均为所在棱的中点,过作正方体的截面.在各正方体中,直线与平面的位置关系描述正确的是

A. 平面的有且只有①;平面的有且只有②③

B. 平面的有且只有②;平面的有且只有①

C. .平面的有且只有①;平面的有且只有②

D. 平面的有且只有②;平面的有且只有③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求的普通方程和极坐标方程;

(2)若相交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的外接球的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线与抛物线交于两点,线段的垂直平分线与直线交于点,当为抛物线上位于线段下方(含)的动点时,则面积的最大值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|ax-2|,不等式f(x)≤4的解集为{x|-2≤x≤6}.

(1)求实数a的值;

(2)设g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:

(年龄/岁)

26

27

39

41

49

53

56

58

60

61

(脂肪含量/%)

14.5

17.8

21.2

25.9

26.3

29.6

31.4

33.5

35.2

34.6

根据上表的数据得到如下的散点图.

(1)根据上表中的样本数据及其散点图:

(i)求

(i)计算样本相关系数(精确到0.01),并刻画它们的相关程度.

(2)若关于的线性回归方程为,求的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量.

附:参考数据:

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

同步练习册答案