精英家教网 > 高中数学 > 题目详情
12.已知定义在R上的函数f(x)=x2+bx+c(a∈R,c∈R),定义:f1(x)=f(x),fn(x)=f(fn-1(x)).n≥2,n∈N*
(1)若b=c=1,当n=1,2时比较fn(x)与x的大小关系.
(2)若对任意的x∈R,都有使得f2012(x)>x,用反证法证明:4c>(b-1)2

分析 (1)分别求出f1(x),f2(x),作差比较即可;(2)运用反证法得4c≤(b-1)2,得出矛盾.

解答 解:(1)因为f1 (x)=f(x)=x2+x+1,
f2(x)=f(f1(x))=(x2+x+1)2+(x2+x+1)+1,
∴f2(x)-x=(x2+x+1)2+(x2+x+1)+1-x=(x2+x+1)2+x2+2>0
∴fn(x)>x,(n=1,2);
(2)若4c≤(b-1)2,则F(x)=f(x)-x=0的△≥0,
则存在x0 使得f(x0)=x0
f2(x0)=f(f(x0))=f(x0)=x0
…,
f2012(x0)=x0
与f2012(x)>x矛盾,
所以假设不成立,原命题为真.

点评 本题考查了二次函数的性质,考查新定义问题,考查反证法,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.用数学归纳法证明“1+2+…+n+(n-1)…+2+1=n2(n∈N+)”,从n=k到n=k+1时,左边添加的代数式为(  )
A.k+1B.k+2C.k+1+kD.2(k+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列四组函数中,表示同一函数的是(  )
A.y=x-1与y=$\sqrt{(x-1)^{2}}$B.y=$\sqrt{x-1}$与y=$\frac{x-1}{\sqrt{x-1}}$
C.y=lgx-2与y=lg$\frac{x}{100}$D.y=4lgx与y=lgx2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\frac{1}{x}-x+{x^3}$的图象关于(  )
A.y轴对称B.直线y=x对称C.坐标原点对称D.直线y=-x对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,满足Sn+2=2an(n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=log2an,Tn=$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}$,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在下列各式中错误的个数是(  )
①1∈{0,1,2};
②{1}∈{0,1,2};
③{0,1,2}⊆{0,1,2};
④{0,1,2}={2,0,1};
⑤{0,1}⊆{(0,1)};
⑥∅⊆{0}.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若sinθ$\sqrt{{{sin}^2}θ}$+cosθ$\sqrt{{{cos}^2}θ}$=-1$(θ≠\frac{kπ}{2},k∈Z)$,则θ是第几象限角(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知y=cos(ωx+φ)(ω>0,φ∈[0,2π))的部分图象如图所示,则φ=(  )
A.$\frac{3π}{2}$B.$\frac{7π}{4}$C.$\frac{π}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=1,an+1=2an+n+1,设bn=an+n+2
(1)证明:数列{bn}是等比数列.
(2)设数列{an}的前n项和为Sn,求an和Sn

查看答案和解析>>

同步练习册答案