精英家教网 > 高中数学 > 题目详情
2.若不等式组$\left\{\begin{array}{l}{0≤x≤\sqrt{2}}\\{y≤2}\\{x≤\sqrt{2}y}\end{array}\right.$表示平面区域D,M(x,y)为D上的动点,点A($\sqrt{2}$,0),则|AM|的最小值为$\frac{\sqrt{6}}{3}$.

分析 作出不等式组对应的平面区域,利用两点间的距离公式进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
由图象知A到直线x=$\sqrt{2}$y的距离最小,
此时|AM|的值最小,
最小值为d=$\frac{|\sqrt{2}-0|}{\sqrt{1+(\sqrt{2})^{2}}}$=$\frac{\sqrt{2}}{\sqrt{3}}$=$\frac{\sqrt{6}}{3}$,
即|AM|的最小值为$\frac{\sqrt{6}}{3}$,
故答案为:$\frac{\sqrt{6}}{3}$.

点评 本题主要考查线性规划的应用,利用点到直线的距离公式结合数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.椭圆$\left\{{\begin{array}{l}{x=3cosϕ}\\{y=4sinϕ}\end{array}}$(ϕ为参数)的长轴长为(  )
A.3B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,已知四棱柱ABCD-A1B1C1D1的底面ABCD是矩形,AB=4,AD=3,AA1=5,∠BAA1=∠DAA1=60°,则A1C的长为$\sqrt{85}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题“若x2<9,则-3<x<3”的逆否命题是(  )
A.若x2≥9,则x≥3或x≤-3B.若-3<x<3,则x2<9
C.若x>3或x<-3,则x2>9D.若x≥3或x≤-3,则x2≥9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若两平行直线3x-2y-1=0,6x+ay+c=0之间的距离为$\frac{{2\sqrt{13}}}{13}$,则c的值为2或-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.从含有两件正品a1、a2和两件次品b1、b2的四件产品中任取一件,每次取出不放回,连续取两次,写出所有的基本事件并求取出的两件产品中恰有一件次品的概率;如果将“每次取出后不放回”这一条换成“每次取出后放回”,写出所有的基本事件并求取出的两件产品中恰有一件次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.正方体ABCD-A1B1C1D1中,AD1与平面BDD1B1所成的角为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知复数z=$\frac{{{m^2}-m-6}}{m+3}$+(m2-2m-15)i
(1)m取何实数值时,z是实数?
(2)m取何实数值时,z是纯虚数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-2ax+5.
(1)是否存在实数a,使f(x)的定义域和值域是[1,a],若存在,求出a,若不存在,说明理由;
(2)若f(x)在x∈[0,1]上有零点,求实数a的取值范围;
(3)对任意的x∈[1,a+1],总有|f(x)|≤4,求实数a的取值范围.

查看答案和解析>>

同步练习册答案