分析 (Ⅰ)根据函数题意,得出g(x)与f(x)的最小正周期相同,求出即可;
(Ⅱ)利用正弦函数的图象与性质,即可求出f(x)在闭区间上的最值.
解答 解:(Ⅰ)∵函数f(x)图象的对称中心和g(x)图象的对称中心完全相同,
且g(x)图象的最小正周期为$\frac{π}{\frac{1}{2}}$=2π,
∴f(x)的最小正周期T=2π,且ω=1;
(Ⅱ)∵f(x)=3sin(x+$\frac{π}{4}$)+2,
且当x∈[-$\frac{π}{2}$,0]时,x+$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{π}{4}$],
∴sin(x+$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$],
∴3sin(x+$\frac{π}{4}$)∈[-$\frac{3\sqrt{2}}{2}$,$\frac{3\sqrt{2}}{2}$],
∴3sin(x+$\frac{π}{4}$)+2∈[2-$\frac{3\sqrt{2}}{2}$,2+$\frac{3\sqrt{2}}{2}$],
∴函数f(x)在[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值为M=2+$\frac{3\sqrt{2}}{2}$,
最小值为m=2-$\frac{3\sqrt{2}}{2}$.
点评 本题考查了正弦函数与正切函数的图象与性质的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | α∥β,m?α,n?β⇒m∥n? | B. | α⊥β,m⊥α,n⊥β⇒m⊥n | ||
| C. | α⊥β,m∥α,n∥β⇒m⊥n | D. | α∥β,m∥α,n∥β⇒m∥n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{1-{k}^{2}}}{k}$ | B. | -$\frac{\sqrt{1-{k}^{2}}}{k}$ | C. | $\frac{k}{\sqrt{1-{k}^{2}}}$ | D. | -$\frac{k}{\sqrt{1-{k}^{2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com