分别是椭圆
:
+
=1(![]()
)的左、右焦点,
是椭圆
的上顶点,
是直线
与椭圆
的另一个交点,![]()
![]()
=60°.
(1)求椭圆
的离心率;
(2)已知△![]()
的面积为40
,求a, b 的值.
(1)
; (2)
;
【解析】
试题分析:(1)易知A为短轴上的一个顶点,因为![]()
![]()
=60°,所以在△AOF2中,a=AF2=2c,
所以椭圆的离心率为
。
(2)因为![]()
![]()
=60°,所以直线
的斜率为
,所以直线
的方程为
,与椭圆方程联立
得:
,设
,因为
,所以0+x0=
,所以x0=
,y0=
,
所以![]()
=40
…………………………………………………………①
又
………………………………②
①②联立解得:
。
考点:本题考查椭圆的简单性质;直线与椭圆的综合问题。
点评:研究直线与椭圆的综合问题,通常有两种思路:一是转化为研究方程组的解的问题,利用直线方程与椭圆方程所组成的方程组消去一个变量后,将交点问题(包括公共点个数、与交点坐标有关的问题)转化为一元二次方程根的问题,结合根与系数的关系及判别式解决问题;二是运用数形结合的思想.
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练24练习卷(解析版) 题型:解答题
已知A,B分别是椭圆C1:
+
=1的左、右顶点,P是椭圆上异于A,B的任意一点,Q是双曲线C2:
-
=1上异于A,B的任意一点,a>b>0.
(1)若P(
,
),Q(
,1),求椭圆C1的方程;
(2)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1·k2+k3·k4为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)若P是该椭圆上的一个动点,求
·
的最大值和最小值;
(2)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com