精英家教网 > 高中数学 > 题目详情
6.已知函数y=Asin(ωx+φ),(A>0,|φ|<π,ω>0)的一段图象如图所示.
(1)求函数的解析式;
(2)求这个函数的周期和递增区间;
(3)说明该函数的图象可由y=sinx的图象经过怎样的变换而得到.

分析 (1)由图象的顶点坐标求出A,由周期求出ω,通过图象经过($\frac{π}{6}$,2),求出φ,从而得到f(x)的解析式.
(2)由(1)可得函数的周期T,令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,解得单调递增区间.
(3)根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:(1)∵由函数的图象可得A=2,T=2×($\frac{2π}{3}$-$\frac{π}{6}$)=π=$\frac{2π}{ω}$,
∴解得ω=2.
∵图象经过($\frac{π}{6}$,2),可得:2=2sin(2×$\frac{π}{6}$+φ),
∴可得:2×$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,k∈Z,解得:φ=2kπ+$\frac{π}{6}$,k∈Z,
∵|φ|<π,
∴φ=$\frac{π}{6}$,
故函数的解析式为:y=2sin(2x+$\frac{π}{6}$).
(2)由(1)可得函数的周期T=2×($\frac{2π}{3}$-$\frac{π}{6}$)=π,
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,解得:kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
可得单调递增区间为:[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
(3)把y=sinx的图象向左平移$\frac{π}{6}$个单位,可得函数y=sin(x+$\frac{π}{6}$)的图象;
再把所得图象上点的横坐标变为原来的$\frac{1}{2}$倍,可得函数y=sin(2x+$\frac{π}{6}$)的图象;
再把所得图象上的点的纵坐标变为原来的2倍,可得函数y=2sin(2x+$\frac{π}{6}$)的图象.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,注意函数的周期的求法,考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{3}$sin xcos x-$\frac{1}{2}$cos2x-$\frac{1}{2}$.
(1)求f(x)的最小正周期和单调递增区间;
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的最大值和最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=2cos(2x+φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{6}$个单位得到的函数图象关于y轴对称,则函数f(x)在[0,$\frac{π}{2}$]上的最大值与最小值之和为(  )
A.$-\sqrt{3}$B.-1C.0D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在长为10cm的线段AB上任取一点G,用AG为半径作圆,则圆的面积介于36π cm2到64π cm2的概率是(  )
A.$\frac{1}{5}$B.$\frac{1}{10}$C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax(x≥0)的图象经过点(2,$\frac{1}{4}$),其中a>0且a≠1.
(1)求a的值;
(2)求函数y=f(x)(x≥0)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线3x2-y2=k的焦距是8,则k的值为(  )
A.±12B.12C.±48D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知双曲线C与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1共焦点,且它们的离心率之和为$\frac{24}{5}$,求双曲线C的标准方程及其渐进线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\sqrt{{x^2}-4}$的单调递增区间是(  )
A.(-∞,0)B.(0,+∞)C.(-∞,-2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知y=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)-1.
(1)求函数的对称轴和对称中心;
(2)求函数的单调增区间和单调减区间;
(3)若x∈(-$\frac{π}{4}$,$\frac{π}{3}$),求函数的值域.

查看答案和解析>>

同步练习册答案