精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=ax(x≥0)的图象经过点(2,$\frac{1}{4}$),其中a>0且a≠1.
(1)求a的值;
(2)求函数y=f(x)(x≥0)的值域.

分析 (1)由函数f(x)=ax(x≥0)的图象经过点(2,$\frac{1}{4}$)列式求得a值;
(2)直接利用指数式的单调性求得函数的值域.

解答 解:(1)∵函数f(x)=ax(x≥0)的图象经过点(2,$\frac{1}{4}$),
∴$\frac{1}{4}$=a2
∴a=$\frac{1}{2}$;
(2)由(1)知f(x)=($\frac{1}{2}$)x
∵x≥0,∴0<($\frac{1}{2}$)x≤($\frac{1}{2}$)0=1,
即0<f(x)≤1.
∴函数y=f(x)(x≥0)的值域为(0,1].

点评 本题考查指数式的图象和性质,考查函数值域的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.|x-2|+|x+3|≥4的解集为(  )
A.(-∞,-3]B.$[{-3,-\frac{5}{2}}]$C.$[{-∞,-\frac{5}{2}}]$D.$({-∞,-3})∪({-3,-\frac{5}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点A(2,3),B(4,1),△ABC是以AB为底边的等腰三角形,点C在直线l:x-2y+2=0上.
(1)求点C的坐标及S△ABC
(2)若直线l'过点C且与x轴、y轴正半轴分别交于P、Q两点,则:
①求S△POQ的最小值及此时l'的方程;
②求|PC|•|QC|的最小值及此时l'的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的前n项和Sn和通项an满足Sn=$\frac{1}{2}$(1-an),则数列{an}的通项为an=($\frac{1}{3}$)n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x-1)=x2-2x,则f(x)的表达式是(  )
A.f(x)=x2-1B.f(x)=x2-xC.f(x)=x2+xD.f(x)=x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数y=Asin(ωx+φ),(A>0,|φ|<π,ω>0)的一段图象如图所示.
(1)求函数的解析式;
(2)求这个函数的周期和递增区间;
(3)说明该函数的图象可由y=sinx的图象经过怎样的变换而得到.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.曲线$\sqrt{2}$x2+y2=1与直线x+y-1=0交于P,Q两点,M为PQ中点,则kOM=(  )
A.-$\sqrt{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若i为虚数单位,且复数z满足(1+i)z=3-i,则复数z的模是(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{(a-\frac{1}{2})x,x≥2}\\{{a}^{x}-4,x<2}\end{array}\right.$满足对任意的实数x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,则实数a的取值范围为(  )
A.(1,2]B.($\frac{13}{4}$,2]C.(1,3]D.($\frac{13}{4}$,3]

查看答案和解析>>

同步练习册答案