精英家教网 > 高中数学 > 题目详情
13.曲线$\sqrt{2}$x2+y2=1与直线x+y-1=0交于P,Q两点,M为PQ中点,则kOM=(  )
A.-$\sqrt{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

分析 联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系得到M的坐标,代入斜率公式得答案.

解答 解:联立$\left\{\begin{array}{l}{\sqrt{2}{x}^{2}+{y}^{2}=1}\\{x+y-1=0}\end{array}\right.$,得$(\sqrt{2}+1){x}^{2}-2x=0$,
设P(x1,y1),Q(x2,y2),
则${x}_{1}+{x}_{2}=\frac{2}{\sqrt{2}+1}$=$2(\sqrt{2}-1)$,${y}_{1}+{y}_{2}=2-({x}_{1}+{x}_{2})=2-2\sqrt{2}+2=4-2\sqrt{2}$,
∴M坐标为($\sqrt{2}-1$,2-$\sqrt{2}$),
则kOM=$\frac{2-\sqrt{2}}{\sqrt{2}-1}=\sqrt{2}$.
故选:D.

点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,体现了“设而不求”的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知命题p:若0<x<$\frac{π}{2}$,则sin>x:命题q:若0<x<$\frac{π}{2}$,则tanx>x.在命题①p∧q;②p∨q;③p∨(¬q);④(¬p)∨q中,真命题是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义集合运算:A?B={z|z=xy,x∈A,y∈B},设A={1,2},B={2,4},则集合A?B的所有元素之和为14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax(x≥0)的图象经过点(2,$\frac{1}{4}$),其中a>0且a≠1.
(1)求a的值;
(2)求函数y=f(x)(x≥0)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C的两条渐近线为x±2y=0且过点(2,$\sqrt{3}$),则双曲线C的标准方程是(  )
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1C.$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{2}$=1D.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{8}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知双曲线C与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1共焦点,且它们的离心率之和为$\frac{24}{5}$,求双曲线C的标准方程及其渐进线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知某商场新进6000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为2411.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.A={2,a},B={2,a2-2},如果A=B,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某篮球运动员投篮的命中率为0.7,现投了4次球,求下列事件的概率:
(1)恰有2次投中;
(2)至少有2次投中;
(3)至多有2次投中.

查看答案和解析>>

同步练习册答案