分析 由Sn=$\frac{1}{2}$(1-an)知,当n≥2时,an=Sn-Sn-1=-$\frac{1}{2}$an+$\frac{1}{2}$an-1,整理可得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$,由S1=a1=$\frac{1}{2}$(1-a1)⇒a1=$\frac{1}{3}$,从而可知数列{an}是首项为$\frac{1}{3}$,公比为$\frac{1}{3}$的等比数列,于是可求得数列{an}的通项.
解答 解:因为Sn=$\frac{1}{2}$(1-an),
所以,当n≥2时,an=Sn-Sn-1=$\frac{1}{2}$(1-an)-$\frac{1}{2}$(1-an-1)=-$\frac{1}{2}$an+$\frac{1}{2}$an-1,
化简得2an=-an+an-1,即$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$.
又由S1=a1=$\frac{1}{2}$(1-a1),得a1=$\frac{1}{3}$,
所以数列{an}是首项为$\frac{1}{3}$,公比为$\frac{1}{3}$的等比数列.
所以an=$\frac{1}{3}$×($\frac{1}{3}$)n-1=($\frac{1}{3}$)n.
故答案为:an=($\frac{1}{3}$)n
点评 本题考查数列递推式的应用,由Sn=$\frac{1}{2}$(1-an)求得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$是关键,考查等比关系的确定及其通项公式的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\sqrt{3}$ | B. | -1 | C. | 0 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{1}{10}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com