【题目】在直角坐标系
中,直线
,圆
,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(1)求
的极坐标方程;
(2)若直线
的极坐标方程为
,设
的交点为A,B,求
的面积.
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)若
的值域为
,求
的值;
(Ⅱ)巳
,是否存在这祥的实数
,使函数
在区间
内有且只有一个零点.若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
.
(1)当
时,求函数
的定义域;
(2)若
判断
的奇偶性;
(3)是否存在实数
使函数
在[2,3]递增,并且最大值为1,若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足:
,
,且
、
、
成等差数列,其中
.
(1)求实数
的值和数列
的通项公式;
(2)若数列
满足等式:
(
),求数列
的前
项和
;
(3)在(2)的条件下,问:是否存在这样的正数
,可以确保恰有5个自然数
使得不等式
成立?若存在,求
的取值范围,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,对任意
,点
都在函数
的图象上.
(1)求
,归纳数列
的通项公式(不必证明).
(2)将数列
依次按
项、
项、
项、
项、
项循环地分为
,![]()
,
,
,各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值.
(3)设
为数列
的前
项积,若不等式
对一切
都成立,其中
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列
满足
对所有正整数
成立,则称
为“
数列”,现已知数列
是“
数列”.
(1)若
,求
的值;
(2)若
对所有
成立,且存在
使得
,求
的所有可能值,并求出相应的
的通项公式;
(3)数列
满足
,证明:
是等比数列当且仅当
是等差数列。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】辽宁省六校协作体(葫芦岛第一高中、东港二中、凤城一中、北镇高中、瓦房店高中、丹东四中)中的某校文科实验班的
名学生期中考试的语文、数学成绩都不低于
分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:
、
、
、
、
.
![]()
(1)根据频率分布直方图,估计这
名学生语文成绩的中位数和平均数;(同一组数据用该区间的中点值作代表;中位数精确到
)
(2)若这
名学生语文成绩某些分数段的人数
与数学成绩相应分数段的人数
之比如下表所示:
分组区间 |
|
|
|
|
|
|
|
|
|
从数学成绩在
的学生中随机选取
人,求选出的
人中恰好有
人数学成绩在
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,函数g(x)=-2x+3.
(1)当a=2时,求f(x)的极值;
(2)讨论函数
的单调性;
(3)若-2≤a≤-1,对任意x1,x2∈[1,2],不等式|f(x1)-f(x2)|≤t|g(x1)-g(x2)|恒成立,求实数t的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:
得分 |
|
|
|
|
|
|
|
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以认为,此次问卷调查的得分
服从正态分布
,
近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求
;
(2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于
的可以获赠2次随机话费,得分低于
的可以获赠1次随机话费;
②每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元) | 20 | 40 |
概率 |
|
|
现市民小王要参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列及数学期望.
附:①
;
②若
,则
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com