分析 根据几何体的性质,转化为平面问题,利用勾股定理求解得出球的半径.
解答 解:∵AB=a,侧棱长为$\frac{{\sqrt{3}}}{2}a$,
∴O′A=$\frac{\sqrt{2}a}{2}$,O′A=O′B,
∴($\frac{\sqrt{3}a}{2}$)2=($\frac{\sqrt{2}a}{2}$)2+O′P2,O′P=$\frac{1}{2}a$,
∵设球的球心O,半径R,
∴R2=($\frac{\sqrt{2}a}{2}$)2+(R-$\frac{a}{2}$)2,
R=$\frac{\sqrt{3}a}{2}$,
∴球O的体积为:$\frac{4π×(\frac{\sqrt{3}a}{2})^{3}}{3}$=$\frac{\sqrt{3}{a}^{3}}{2}$
故答案为:$\frac{\sqrt{3}{a}^{3}}{2}$
点评 本题考查球O的体积,考查学生的计算能力,确定球的半径是关键,比较基础
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 |
| x1 | y1 | x2 | y2 | x3 | y3 | x4 | y4 | x5 | y5 | x6 | y6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com