精英家教网 > 高中数学 > 题目详情
14.如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:A1(x1,y1),A2(x2,y2),…,A6(x6,y6)的横、纵坐标分别对应数列{an}(n∈N*)的前12项,(即横坐标为奇数项,纵坐标为偶数项),如表所示:
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
按如此规律下去,则a15=-4,a2016=1008.

分析 根据题目所给的六个点的坐标把十二个数字写出来,组成数列的前十二项,观察数列的特点,归纳出数列的通项公式,进而得到答案.

解答 解:若由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{an}(n∈N*)的前12项,
则a1=1,a2=1,a3=-1,a4=2,a5=2,a6=3,a7=-2,
a8=4,a9=3,a10=5,a11=-3,a12=6,

归纳可得:a4n-3=n,a4n-1=-n.
a2n=n,
∴a15=-4,
a2016=1008,
故答案为:-4,1008

点评 有的数列可以通过实际事件构造新数列,构造出一个我们较熟悉的数列,从而求出数列的通项公式.这类问题考查学生的灵活性,考查学生分析问题及运用知识解决问题的能力,这是一种化归能力的体现

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知正四棱锥P-ABCD的所有顶点都在球O上,且AB=a,侧棱长为$\frac{{\sqrt{3}}}{2}a$,则球O的体积为$\frac{\sqrt{3}{a}^{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在正方体ABCD-A1B1C1D1中,E是的AA1中点,P为地面ABCD内一动点,设PD1、PE与地面ABCD所成的角分别为θ1、θ2(θ1、θ2均不为0),若θ12,则动点P的轨迹为哪种曲线的一部分(  )
A.直线B.C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲、乙必须相邻且不能排在第一位,节目丙必须排在首尾,该台晚会节目演出顺序的编排方案共有(  )
A.60种B.72种C.84种D.120种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=x3+ax2+bx(x>0)的图象与x轴相切于M(3,0).
(1)求f(x)的解析式;
(2)是否存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.用数字0,1,2,3,4,5组成没有重复数字的五位数,求其中比40000大的偶数的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆M:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{{b}^{3}}$=1,经过点(2$\sqrt{3}$,2$\sqrt{2}$)的双曲线N:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率与椭圆M的离心率互为倒数.
(1)求双曲线N的方程;
(2)抛物线的准线经过双曲线N的左焦点,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温(如表),并求得线性回归方程为$\widehat{y}$=-2x+60.不小心丢失表中数据c,d,那么由现有数据知2c+d=100.
xc1310-1
y243438d

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知曲线C:y=lnx在x=e处的切线为l.
(1)求直线l的方程;
(2)求直线l与曲线C以及x轴所围成的面积.

查看答案和解析>>

同步练习册答案