6£®ÒÑÖªÍÖÔ²M£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{{b}^{3}}$=1£¬¾­¹ýµã£¨2$\sqrt{3}$£¬2$\sqrt{2}$£©µÄË«ÇúÏßN£º$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊÓëÍÖÔ²MµÄÀëÐÄÂÊ»¥Îªµ¹Êý£®
£¨1£©ÇóË«ÇúÏßNµÄ·½³Ì£»
£¨2£©Å×ÎïÏßµÄ×¼Ïß¾­¹ýË«ÇúÏßNµÄ×󽹵㣬ÇóÅ×ÎïÏߵķ½³Ì£®

·ÖÎö £¨1£©ÓÉÍÖÔ²M£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{{b}^{3}}$=1£¬¾­¹ýµã£¨2$\sqrt{3}$£¬2$\sqrt{2}$£©µÄË«ÇúÏßN£º$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊÓëÍÖÔ²MµÄÀëÐÄÂÊ»¥Îªµ¹Êý£¬Áгö·½³Ì×飬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öË«ÇúÏßNµÄ·½³Ì£®
£¨2£©ÏÈÇó³öË«ÇúÏßN£º$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1µÄ×ó½¹µãΪF£¨$-2\sqrt{2}$£¬0£©£¬´Ó¶øÅ×ÎïÏßµÄ×¼Ïß·½³ÌΪx=-2$\sqrt{2}$£¬ÓÉ´ËÄÜÇó³öÅ×ÎïÏߵķ½³Ì£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²M£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{{b}^{3}}$=1£¬
¾­¹ýµã£¨2$\sqrt{3}$£¬2$\sqrt{2}$£©µÄË«ÇúÏßN£º$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊÓëÍÖÔ²MµÄÀëÐÄÂÊ»¥Îªµ¹Êý£¬
¡à$\left\{\begin{array}{l}{\frac{12}{{a}^{2}}-\frac{8}{{b}^{2}}=1}\\{\frac{\sqrt{{b}^{3}-4}}{\sqrt{{b}^{3}}}=\frac{a}{\sqrt{{a}^{2}+{b}^{2}}}}\end{array}\right.$£¬
½âµÃa=2£¬b=2£¬
¡àË«ÇúÏßNµÄ·½³ÌΪ$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1£®
£¨2£©Ë«ÇúÏßN£º$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1µÄ×ó½¹µãΪF£¨$-2\sqrt{2}$£¬0£©£¬
¡àÅ×ÎïÏßµÄ×¼Ïß¾­¹ýË«ÇúÏßNµÄ×󽹵㣬
¡àÅ×ÎïÏßµÄ×¼Ïß·½³ÌΪx=-2$\sqrt{2}$£¬
¡àÅ×ÎïÏߵķ½³ÌΪy2=8$\sqrt{2}x$£®

µãÆÀ ±¾Ì⿼²éË«ÇúÏß·½³ÌºÍÅ×ÎïÏß·½³ÌµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²¡¢Ë«ÇúÏß¡¢Å×ÎïÏßÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÈçͼËùʾµÄһϵÁÐÕý·½Ðν«µãÕó·Ö¸î£¬´ÓÄÚÏòÍâÀ©Õ¹£¬ÆäģʽÈçÏ£º
4=22
4+12=16=42
4+12+20+36=62
4+12+20+28=64=82
¡­
ÓÉÉÏÊöÊÂʵ£¬ÇëÍÆ²â¹ØÓÚnµÄµÈʽ£º4+12+20+¡­+£¨8n-4£©=£¨2n£©2£¨n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èôº¯Êýf£¨x£©=$\frac{1}{2}$x2-2ax+ln x´æÔÚ´¹Ö±ÓÚyÖáµÄÇÐÏߣ¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÈçͼËùʾ£¬×ø±êÖ½ÉϵÄÿ¸öµ¥Ôª¸ñµÄ±ß³¤Îª1£¬ÓÉÏÂÍùÉϵÄÁù¸öµã£ºA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬¡­£¬A6£¨x6£¬y6£©µÄºá¡¢×Ý×ø±ê·Ö±ð¶ÔÓ¦ÊýÁÐ{an}£¨n¡ÊN*£©µÄǰ12Ï£¨¼´ºá×ø±êÎªÆæÊýÏ×Ý×ø±êΪżÊýÏ£¬Èç±íËùʾ£º
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
°´Èç´Ë¹æÂÉÏÂÈ¥£¬Ôòa15=-4£¬a2016=1008£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚËÄÀâ×¶S-ABCDÖУ¬AB¡ÍAD£¬AB¡ÎCD£¬CD=3AB£¬Æ½ÃæSAD¡ÍÆ½ÃæABCD£¬MÊÇÏß¶ÎADÉÏÒ»µã£¬AM=AB£¬DM=DC£¬SM¡ÍAD£®
£¨¢ñ£©Ö¤Ã÷£ºCM¡ÍSB£»
£¨¢ò£©ÉèÈýÀâ×¶C-SBMÓëËÄÀâ×¶S-ABCDµÄÌå»ý·Ö±ðΪV1ÓëV£¬Çó$\frac{{V}_{1}}{V}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ä³¹«Ë¾ÎªÈ·¶¨ÏÂÒ»Äê¶ÈͶÈëijÖÖ²úÆ·µÄÐû´«·Ñ£¬ÐèÁ˽âÄêÐû´«·Ñx£¨µ¥Î»£ºÇ§Ôª£©¶ÔÄêÏúÊÛÁ¿y£¨µ¥Î»£ºt£©ºÍÄêÀûÈóz£¨µ¥Î»£ºÇ§Ôª£©µÄÓ°Ï죮¶Ô½ü8ÄêµÄÄêÐû´«·ÑxiºÍÄêÏúÊÛÁ¿yi£¨i=1£¬2£¬¡­£¬8£©Êý¾Ý×÷Á˳õ²½´¦Àí£¬µÃµ½ÏÂÃæµÄÉ¢µãͼ¼°Ò»Ð©Í³¼ÆÁ¿µÄÖµ£®




$\overrightarrow x$$\overrightarrow y$$\overrightarrow w$$\sum_{i=1}^8{{{£¨{x_i}-\overline x£©}^2}}$$\sum_{i=1}^8{{{£¨{w_i}-\overline w£©}^2}}$$\sum_{i=1}^8{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}$$\sum_{i=1}^8{£¨{w_i}-\overline w£©£¨{y_i}-\overline y£©}$
46.65636.8289.81.61469108.8
±íÖÐwi=$\sqrt{x_i}$£¬$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
£¨1£©¸ù¾ÝÉ¢µãͼÅжϣ¬y=a+bxÓëy=c+d$\sqrt{x}$ÄÄÒ»¸öÊÊÒË×÷ΪÄêÏúÊÛÁ¿y¹ØÓÚÄêÐû´«·ÑxµÄ»Ø¹é·½³ÌÀàÐÍ£¿£¨¸ø³öÅжϼ´¿É£¬²»±ØËµÃ÷ÀíÓÉ£©
£¨2£©¸ù¾Ý£¨1£©µÄÅжϽá¹û¼°±íÖÐÊý¾Ý£¬½¨Á¢y¹ØÓÚxµÄ»Ø¹é·½³Ì£»
£¨3£©ÒÑÖªÕâÖÖ²úÆ·µÄÄêÀûÈózÓëx£¬yµÄ¹ØÏµÎªz=0.2y-x£®¸ù¾Ý£¨2£©µÄ½á¹û£¬µ±ÄêÐû´«·Ñx=49ʱ£¬ÄêÏúÊÛÁ¿¼°ÄêÀûÈóµÄÔ¤±¨ÖµÊǶàÉÙ£¿
¸½£º¶ÔÓÚÒ»×éÊý¾Ý£¨u1£¬v1£©£¬£¨u2£¬v2£©£¬¡­£¬£¨un£¬vn£©£¬Æä»Ø¹éÖ±Ïßv=¦Á+¦ÂuµÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ·Ö±ðΪ£º$\widehat¦Â=\frac{{\sum_{i=1}^n{£¨{u_i}-\overline u£©£¨{v_i}-\overline{v£©}}}}{{\sum_{i=1}^n{{{£¨{u_i}-\overline u£©}^2}}}}$£¬$\widehat¦Á=\overline v-\widehat¦Â\overline u$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª³¤Îª2µÄÏß¶ÎABµÄÁ½¸ö¶ËµãAºÍB·Ö±ðÔÚxÖáºÍyÖáÉÏ»¬¶¯£¬µãMΪÏß¶ÎABµÄÖе㣬µãOÎª×ø±êÔ­µã£®
£¨¢ñ£©ÇóµãMµÄ¹ì¼£·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl£ºy=2x+bÓëµãMµÄ¹ì¼£ÓÐÁ½¸ö²»Í¬µÄ½»µãC£¬D£¬ÇÒµãOÔÚÒÔÏß¶ÎCDΪֱ¾¶µÄÔ²Í⣬ÇóʵÊýbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªÇòO±»»¥Ïà´¹Ö±µÄÁ½¸öÆ½ÃæËù½Ø£¬µÃµ½Á½Ô²µÄ¹«¹²ÏÒ³¤Îª2£¬ÈôÁ½Ô²µÄ°ë¾¶·Ö±ðΪ$\sqrt{3}$ºÍ3£¬ÔòÇòOµÄ±íÃæ»ýΪ44¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÔÚ3£¬5£¬7£¬13ËĸöÊýÖÐÈÎÈ¡Á½¸öÊý£º
£¨1£©×ö³Ë·¨£¬¿ÉÒԵóö¶àÉÙ¸ö²»Í¬µÄ»ý£¿
£¨2£©×ö³ý·¨£¬¿ÉÒԵóö¶àÉÙ¸ö²»Í¬µÄÉÌ£¿
ÏÂÃæ½áÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®£¨1£©£¨2£©¶¼ÊÇÅÅÁÐÎÊÌâB£®£¨1£©£¨2£©¶¼ÊÇ×éºÏÎÊÌâ
C£®£¨1£©ÊÇÅÅÁÐÎÊÌ⣬£¨2£©ÊÇ×éºÏÎÊÌâD£®£¨1£©ÊÇ×éºÏÎÊÌ⣬£¨2£©ÊÇÅÅÁÐÎÊÌâ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸