精英家教网 > 高中数学 > 题目详情
5.如图,在正方体ABCD-A1B1C1D1中,E是的AA1中点,P为地面ABCD内一动点,设PD1、PE与地面ABCD所成的角分别为θ1、θ2(θ1、θ2均不为0),若θ12,则动点P的轨迹为哪种曲线的一部分(  )
A.直线B.C.椭圆D.抛物线

分析 通过建系如图,利用cosθ1=cosθ2,结合平面向量数量积的运算计算即得结论.

解答 解:建系如图,设正方体的边长为1,则E(2,0,1),D1(0,0,2),
设P(x,y,0),则$\overrightarrow{PE}$=(2-x,-y,1),$\overrightarrow{P{D}_{1}}$=(-x,-y,2),
∵θ12,$\overrightarrow{z}$=(0,0,1),
∴cosθ1=cosθ2,即$\frac{\overrightarrow{PE}•\overrightarrow{z}}{|\overrightarrow{PE}|•|\overrightarrow{z}|}$=$\frac{\overrightarrow{P{D}_{1}}•\overrightarrow{z}}{|\overrightarrow{P{D}_{1}}|•|\overrightarrow{z}|}$,
代入数据,得:$\frac{1}{\sqrt{(2-x)^{2}+{y}^{2}+1}}$=$\frac{2}{\sqrt{{x}^{2}+{y}^{2}+4}}$,
整理得:x2+y2-$\frac{16}{3}$x+$\frac{16}{3}$=0,
变形,得:$(x-\frac{8}{3})^{2}$+y2=$\frac{16}{9}$,
即动点P的轨迹为圆的一部分,
故选:B.

点评 本题考查平面与圆柱面的截线,建立空间直角坐标系是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=2,BC=2$\sqrt{2}$,M,N分别是CC1,BC的中点,点P在直线A1B1上,且$\overrightarrow{{A_1}P}=λ\overrightarrow{{A_1}{B_1}}$.
(Ⅰ)证明:无论λ取何值,总有AM⊥PN;
(Ⅱ)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角取最大值时的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示的一系列正方形将点阵分割,从内向外扩展,其模式如下:
4=22
4+12=16=42
4+12+20+36=62
4+12+20+28=64=82

由上述事实,请推测关于n的等式:4+12+20+…+(8n-4)=(2n)2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某几何体的三视图如图所示,其中正视图和侧视图均为全等的几何图形(下边是边长为2的正方形,上边为半圆),俯视图为等腰直角三角形(直角边的长为2)及其外接圆,则该几何体的体积是4+$\frac{4\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC三个顶点坐标分别为A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.将函数y=sinx+$\sqrt{3}$cosx的图象向右平移φ(φ>0)个单位,再向上平移1个单位后,所得图象经过点($\frac{π}{4}$,1),则φ的最小值为$\frac{7π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=$\frac{1}{2}$x2-2ax+ln x存在垂直于y轴的切线,则实数a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:A1(x1,y1),A2(x2,y2),…,A6(x6,y6)的横、纵坐标分别对应数列{an}(n∈N*)的前12项,(即横坐标为奇数项,纵坐标为偶数项),如表所示:
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
按如此规律下去,则a15=-4,a2016=1008.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知球O被互相垂直的两个平面所截,得到两圆的公共弦长为2,若两圆的半径分别为$\sqrt{3}$和3,则球O的表面积为44π.

查看答案和解析>>

同步练习册答案