精英家教网 > 高中数学 > 题目详情

(本题满分14分)已知四边形满足的中点,将沿着翻折成,使面的中点.

(Ⅰ)求四棱锥的体积;(Ⅱ)证明:∥面
(Ⅲ)求面与面所成二面角的余弦值.

(Ⅰ)(Ⅱ)见解析(Ⅲ)

解析试题分析:(Ⅰ)取的中点连接
因为,所以为等边三角形,
所以
又因为面,所以,                       ……2分
所以四棱锥的体积              ……5分

(Ⅱ)连接,连接
因为为菱形,所以
的中点,所以
因为,,
所以∥面.                                                  ……9分
(Ⅲ)连接,分别以轴建立空间直角坐标系.

,
                                 ……10分
设面的法向量,则
,则.
设面的法向量为,则
,则.                                        ……12分
所以二面角的余弦值为       ……14分
考点:本小题主要考查线面平行、线面垂直、面面垂直的判定和证明,考查椎体体积公式的应用和二面角的求法,考查学生的空间想象能力和逻辑思维能力和运算求解能力.
点评:解答立体几何的证明题,要把定理需要的条件意义列出来,缺一不可;求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分)如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图,俯视图,在直观图中,MBD的中点,NBC的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(1)求该几何体的体积;
(2)求证:AN∥平面CME
(3)求证:平面BDE⊥平面BCD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知直三棱柱中,,点M是的中点,Q是AB的中点,
(1)若P是上的一动点,求证:
(2)求二面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
在三棱锥中,都是边长为的等边三角形,分别是的中点.
(1)求证:平面
(2)求证:平面⊥平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是矩形,⊥平面.

(1)求证:⊥平面
(2)求二面角余弦值的大小;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四边形满足的中点,将沿着翻折成,使面的中点.

(Ⅰ)求四棱的体积;(Ⅱ)证明:∥面
(Ⅲ)求面与面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分).如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC的中点,且DE∥BC.
(1)求证:DE∥平面ACD
(2)求证:BC⊥平面PAC;
(3)求AD与平面PAC所成的角的正弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)(如图)在底半径为,母线长为的圆锥中内接一个高为的圆柱,求圆柱的表面积

(2)如图,在四边形中,,求四边形旋转一周所成几何体的表面积及体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆锥的轴截面ABC是边长为2的正三角形,O是底面圆心.
(Ⅰ)求圆锥的表面积;
(Ⅱ)经过圆锥的高AO的中点O¢作平行于圆锥底面的截面,
求截得的圆台的体积.

查看答案和解析>>

同步练习册答案