精英家教网 > 高中数学 > 题目详情

如图,已知圆锥的轴截面ABC是边长为2的正三角形,O是底面圆心.
(Ⅰ)求圆锥的表面积;
(Ⅱ)经过圆锥的高AO的中点O¢作平行于圆锥底面的截面,
求截得的圆台的体积.

解:(Ⅰ)∵r=1,l=2,∴S表面=pr2+prl=3p;………………………2分
(Ⅱ)设圆锥的高为h,则h=,r=1,
∴小圆锥的高h¢=,小圆锥的底面半径r¢=,…………………2分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知四边形满足的中点,将沿着翻折成,使面的中点.

(Ⅰ)求四棱锥的体积;(Ⅱ)证明:∥面
(Ⅲ)求面与面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱中,侧面底面,且,O中点.
(Ⅰ)证明:平面
(Ⅱ)求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是正方形,⊥底面上的任意一点。

(1)求证:平面
(2)设,求点到平面的距离
(3)求的值为多少时,二面角的大小为120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知高为3的棱柱ABC-A1B1C1的底面是边长为1的正三角形,求三棱锥B1-ABC的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图所示的一个三视图中,右面是一个长方体截去一角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm)


(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正三棱柱ABC—A1B1C1的侧面对角线A1B与侧面成45°角,AB=4cm,求这个棱柱的侧面积。(12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
一个几何体是由圆柱和三棱锥组合而成,点在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图3所示,其中

(1)求证:
(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 (本小题满分12分)请你设计一个包装盒,如下图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(cm).

(I)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?
(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[

查看答案和解析>>

同步练习册答案