精英家教网 > 高中数学 > 题目详情

如图,已知高为3的棱柱ABC-A1B1C1的底面是边长为1的正三角形,求三棱锥B1-ABC的体积。

解:三棱锥B1-ABC的高h=3,底面积S=S△ABC=×12=,
=Sh=××3=.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知四边形满足的中点,将沿着翻折成,使面的中点.

(Ⅰ)求四棱的体积;(Ⅱ)证明:∥面
(Ⅲ)求面与面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 在空间四边形SABC中, 平面ABC, , 于N, 于M.

求证:①AN^BC;  ②平面SAC^平面ANM

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面⊥平面为正方形, ,且分别是线段的中点.

(Ⅰ)求证://平面;  
(Ⅱ)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆锥的轴截面ABC是边长为2的正三角形,O是底面圆心.
(Ⅰ)求圆锥的表面积;
(Ⅱ)经过圆锥的高AO的中点O¢作平行于圆锥底面的截面,
求截得的圆台的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图所示的几何体是由以等边三角形为底面的棱柱被平面所截而得,已平面的中点,
(Ⅰ)求的长;
(Ⅱ)求证:面
(Ⅲ)求平面与平面相交所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如右图所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为,设这条最短路线与CC1的交点为N.求:

(1)该三棱柱的侧面展开图的对角线长;
(2)PC和NC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,在底面是直角梯形的四棱锥S-ABCD中,


(1)求四棱锥S-ABCD的体积;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
右图为一简单组合体,其底面ABCD为正方形,平面,且="2" .
(1)答题卡指定的方框内画出该几何体的三视图;
(2)求四棱锥B-CEPD的体积.
  
     

查看答案和解析>>

同步练习册答案