精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,若 ,且 对任意的 恒成立,则 的最大值为( )
A.2
B.3
C.4
D.5

【答案】B
【解析】
因为 ,若 ,且 对任意的 恒成立,
,因为
,对任意 恒成立,
,则
,则
所以函数 上单调递增.
因为
所以方程 上存在唯一实根 ,且满足
时, ,即 ,当 时, ,即
所以函数 上单调递减,在 上单调递增
所以
所以
所以 ,因为 ,故整数 的最大值为 ,故答案为:B.
本题主要考查利用导数求解函数的单调性,进而求函数的最值问题。考查了等价转化的数学思想方法,把恒成立的问题利用分离变量的方法把不同的两个变量进行分类,转化为求函数的最值的问题,即,对任意的恒成立,然后再利用导数确定函数的单调区间,进而求出函数的最小值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是边长为2的正三角形,AB=BD= ,PB=3.

(1)求证:平面PAD⊥平面ABCD;
(2)设Q是棱PC上的点,当PA∥平面BDQ时,求二面角A﹣BD﹣Q的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体ABCDEF中,四边形ABCD为正方形,底面ABFE为直角梯形,∠ABF为直角, ,平面ABCD⊥平面ABFE.

(1)求证:DB⊥EC;
(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,若sinA=cos( ﹣B),a=3,c=2.
(1)求 的值;
(2)求tan( ﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )
A.若p∨q为真命题,则p∧q为真命题
B.“a>0,b>0”是“ ≥2”的充要条件
C.命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”
D.命题p:x∈R,x2+x-1<0,则﹁p:x∈R,x2+x-1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 中,曲线 的参数方程为 为参数),在以 为极点, 轴的正半轴为极轴的极坐标系中,曲线 是圆心为 ,半径为1的圆.
(1)求曲线 的直角坐标方程;
(2)设 为曲线 上的点, 为曲线 上的点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
x∈R,不等式x2+2x>4x-3均成立;
②若log2x+logx2≥2,则x>1;
③“若a>b>0且c<0,则 ”的逆否命题;
④若p且q为假命题,则p,q均为假命题.
其中真命题是( )
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)讨论 的单调性;
(2)若 有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在吸烟与患肺癌这两个分类变量的独立性检验的计算中,下列说法正确的是( )
A.若 的观测值为 ,在犯错误的概率不超过 的前提下认为吸烟与患肺癌有关系,那么在100个吸烟的人中必有99人患有肺癌.
B.由独立性检验可知,在犯错误的概率不超过 的前提下认为吸烟与患肺癌有关系时,我们说某人吸烟,那么他有 的可能患有肺癌.
C.若从统计量中求出在犯错误的概率不超过 的前提下认为吸烟与患肺癌有关系,是指有 的可能性使得判断出现错误.
D.以上三种说法都不正确.

查看答案和解析>>

同步练习册答案