精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=2-x2-log2x,正实数a、b、c满足f(a)<f(b)<0<f(c),若实数m是方程f(x)=0的一个根,那么下列四个结论:①m>a;②m<b;③m>c;④$m>\frac{1}{2}(a+b)$.其中成立的是②③.

分析 先求函数f(x)的定义域,再判断f(x)=2-x2-log2x在(0,+∞)上是减函数;从而可得a>b>m>c;从而解得.

解答 解:∵f(x)=2-x2-log2x的定义域为(0,+∞),
又∵y=2-x2在(0,+∞)上是减函数,
y=-log2x在(0,+∞)上是减函数,
∴f(x)=2-x2-log2x在(0,+∞)上是减函数;
又∵实数m是方程f(x)=0的一个根,
∴f(m)=0,
∴f(a)<f(b)<f(m)<f(c),
∴a>b>m>c;
∴m<a,m<b,m>c,m<$\frac{1}{2}$(a+b);
故答案为:②③.

点评 本题考查了函数的单调性的判断与应用,同时考查了方程的根与函数零点的关系应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知某产品广告费用x与销售额y(单位:万元)的回归直线方程为$\widehaty=1.5\widehatx+a$,若样本点的中心为(2,4),据此模型预报广告费用为2.4万元时销售额为4.6万元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l:5x+2y+3=0.
(1)求直线:5x+2y-1=0与直线l的距离;
(2)求直线l2:3x+7y-13=0与直线l的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线l过点(2,3)且与直线m:3x+2y-4=0垂直,则直线l的方程为(  )
A.3x+2y-12=0B.2x+3y-13=0C.3x-2y=0D.2x-3y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.sin40°(tan10°-$\sqrt{3}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用火柴棒摆“金鱼”,如图所示:

按照上面的规律,第10个“金鱼”图需要火柴棒的根数为(  )
A.58B.78C.62D.82

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$\overrightarrow a=(2x,1,3),\overrightarrow b=(1,-2y,9)$,若$\overrightarrow a$∥$\overrightarrow b$,则(  )
A.x=1,y=1B.$x=\frac{1}{2},y=-\frac{1}{2}$C.$x=\frac{1}{6},y=-\frac{3}{2}$D.$x=-\frac{1}{6},y=\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左右焦点分别为F1,F2,椭圆上存在点P,使得∠F1PF2=60°,则椭圆的离心率的取值范围是(  )
A.$({0,\frac{1}{2}}]$B.$[{\frac{1}{2},1})$C.$({0,\frac{{\sqrt{3}}}{2}}]$D.$[{\frac{{\sqrt{3}}}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.化简:
(1)$\frac{cos(-α)tan(7π+α)}{sin(π+α)}$
(2)$\frac{sin(π-α)sin(π+α)}{tan(2π-α)sin(2π+α)}$.

查看答案和解析>>

同步练习册答案