精英家教网 > 高中数学 > 题目详情
15.已知某产品广告费用x与销售额y(单位:万元)的回归直线方程为$\widehaty=1.5\widehatx+a$,若样本点的中心为(2,4),据此模型预报广告费用为2.4万元时销售额为4.6万元.

分析 利用回归直线经过样本中心,求出回归直线方程,然后求解即可.

解答 解:因为回归直线方经过样本中心,某产品广告费用x与销售额y(单位:万元)的回归直线方程为$\widehaty=1.5\widehatx+a$,若样本点的中心为(2,4),所以4=1.5×2+a,可得a=1,
回归直线方程为:$\widehat{y}=1.5\hat{x}+1$,
模型预报广告费用为2.4万元时销售额为:1.5×2.4+1=4.6(万元).
故答案为:4.6.

点评 本题考查回归直线方程的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=sin($\frac{π}{2}$-x)sinx-$\sqrt{3}$cos2x,x∈[$\frac{π}{6}$,$\frac{2π}{3}$]
(1)求函数f(x)的值域;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和.如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,…
依此类推可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{20}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$
其中m≤n,m,n∈N*,则m+n=23.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知正方形ABCD的边长为1,直线MN过正方形的中心O交边AD,BC于M,N两点,若点P满足2$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),则$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值为-$\frac{7}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x,y,z均大于0,则三个数:x+$\frac{1}{y}$,y+$\frac{1}{z}$,z+$\frac{1}{x}$的值(  )
A.都大于2B.至少有一个不大于2
C.都小于2D.至少有一个不小于2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知变量x和y满足关系y=0.1x-10,变量z与y负相关,则下列结论中正确的是(  )
A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关
C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ln$\frac{x+1}{x-1}$,判断函数f(x)在区间(1,+∞)上的单调性,并加以说明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,棱长为1的正方体ABCD-A1B1C1D1,E,F,G分别是DD1,BD,BB1的中点.
(1)求证:EF⊥CF;
(2)求$\overrightarrow{EF}$与$\overrightarrow{CG}$所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=2-x2-log2x,正实数a、b、c满足f(a)<f(b)<0<f(c),若实数m是方程f(x)=0的一个根,那么下列四个结论:①m>a;②m<b;③m>c;④$m>\frac{1}{2}(a+b)$.其中成立的是②③.

查看答案和解析>>

同步练习册答案