| A. | $({0,\frac{1}{2}}]$ | B. | $[{\frac{1}{2},1})$ | C. | $({0,\frac{{\sqrt{3}}}{2}}]$ | D. | $[{\frac{{\sqrt{3}}}{2},1})$ |
分析 当动点P在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P对两个焦点的张角∠F1PF2渐渐增大,当且仅当P点位于短轴端点P0处时,张角∠F1PF2达到最大值,由此可得结论.
解答
解:如图,当动点P在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P对两个焦点的张角∠F1PF2渐渐增大,当且仅当P点位于短轴端点P0处时,张角∠F1PF2达到最大值.由此可得:
∵存在点P为椭圆上一点,使得∠F1PF2=60°,
∴△P0F1F2中,∠F1P0F2≥60°,
∴Rt△P0OF2中,∠OP0F2≥30°,
所以P0O≤$\sqrt{3}$OF2,即b≤$\sqrt{3}$c,
∴a2-c2≤3c2,可得a2≤4c2,
∴$\frac{c}{a}$≥$\frac{1}{2}$,
∵0<e<1,
∴$\frac{1}{2}≤e<1$.
故选:B.
点评 本题考查了直角三角形的三角函数和椭圆的简单几何性质等知识点,考查数形结合的数学思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{3}+\frac{y^2}{2}=1$ | B. | $\frac{x^2}{3}+\frac{y^2}{6}=1$ | C. | $\frac{x^2}{2}+\frac{y^2}{3}=1$ | D. | $\frac{x^2}{9}+\frac{y^2}{4}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2e}$ | D. | $\frac{1}{4e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com