精英家教网 > 高中数学 > 题目详情
2.(xn)′=nxn-1;  
(cosx)′=-sinx;    
(ex)′=ex
(logax)′=$\frac{1}{xlna}$; 
(ax)′=axlna.

分析 根据常用函数的导数公式填入答案即可.

解答 解:(xn)′=nxn-1;  
(cosx)′=-sinx;    
(ex)′=ex
(logax)′=$\frac{1}{xlna}$; 
(ax)′=axlna.
故答案为:nxn-1;-sinx;ex; $\frac{1}{xlna}$;axlna.

点评 本题考查了常用函数的导数公式,需要熟练掌握,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.直线l过点(2,3)且与直线m:3x+2y-4=0垂直,则直线l的方程为(  )
A.3x+2y-12=0B.2x+3y-13=0C.3x-2y=0D.2x-3y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左右焦点分别为F1,F2,椭圆上存在点P,使得∠F1PF2=60°,则椭圆的离心率的取值范围是(  )
A.$({0,\frac{1}{2}}]$B.$[{\frac{1}{2},1})$C.$({0,\frac{{\sqrt{3}}}{2}}]$D.$[{\frac{{\sqrt{3}}}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tan(π-α)=2.化简下列各式:
(1)$\frac{sin(2π-α)+2cos(π-α)}{sin(π-α)+cos(3π+α)}$;
(2)1-2cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.计算:C${\;}_{4}^{3}$+C${\;}_{5}^{3}$+…+C${\;}_{10}^{3}$=329.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若角α的终边与单位圆相交于点($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),则sinα的值为(  )
A.$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.化简:
(1)$\frac{cos(-α)tan(7π+α)}{sin(π+α)}$
(2)$\frac{sin(π-α)sin(π+α)}{tan(2π-α)sin(2π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=3x3-9x2+5在区间[-2,2]上的最大值是(  )
A.5B.2C.-7D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点P(-4t,t)在角α的终边上,且α∈(0,π),求$\frac{sinα•(1-ta{n}^{2}α)}{\frac{1}{cosα}}$的值.

查看答案和解析>>

同步练习册答案