精英家教网 > 高中数学 > 题目详情
6.若a>b>0,则a2+$\frac{2}{b(a-b)}$的最小值是4$\sqrt{2}$.

分析 先由基本不等式求得b(a-b)范围,代入原式,再由基本不等式可得.

解答 解:∵a>b>0,∴a-b>0,
∴b(a-b)≤($\frac{b+a-b}{2}$)2=$\frac{{a}^{2}}{4}$,
∴a2+$\frac{2}{b(a-b)}$≥a2+$\frac{2}{\frac{{a}^{2}}{4}}$=a2+$\frac{8}{{a}^{2}}$≥2$\sqrt{{a}^{2}•\frac{8}{{a}^{2}}}$=4$\sqrt{2}$
当且仅当b=a-b且a2=$\frac{8}{{a}^{2}}$即a=$\root{4}{8}$且b=$\frac{1}{2}$$\root{4}{8}$时取等号.
故答案为:4$\sqrt{2}$.

点评 本题考查基本不等式求最值,先由基本不等式求出b(a-b)≤$\frac{{a}^{2}}{4}$是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和是Sn,若点An(n,$\frac{{S}_{n}}{n}$)在函数f(x)=-x+c的图象上运动,其中c是与x无关的常数,且a1=3(n∈N*).
(1)求数列{an}的通项公式;
(2)记bn=a${\;}_{{a}_{n}}$,求数列{bn}的前n项和Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.光线沿着直线y=-3x+b射到直线x+y=0上,经反射后沿着直线y=ax+2射出,则有(  )
A.a=$\frac{1}{3}$,b=6B.a=-$\frac{1}{3}$,b=-6C.a=3,b=-$\frac{1}{6}$D.a=-3,b=$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.满足z2=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i的复数z=$\frac{\sqrt{3}}{2}+\frac{1}{2}i$或-$\frac{\sqrt{3}}{2}-\frac{1}{2}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若${C}_{n}^{0}$+$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{3}$${C}_{n}^{2}$+…+$\frac{1}{n+1}$${C}_{n}^{n}$=$\frac{31}{n+1}$,求(1-2x)2n的展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,已知D是AB边上一点,若$\overrightarrow{AD}$=$\frac{1}{3}\overrightarrow{AB}$,$\overrightarrow{CD}$=$\frac{2}{3}$$\overrightarrow{CA}$+$λ\overrightarrow{CB}$,则λ=(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.-$\frac{1}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an}的前n项和为Sn,且$\frac{{S}_{25}}{{a}_{23}}$=5,$\frac{{S}_{45}}{{a}_{33}}=25$,则$\frac{{S}_{65}}{{a}_{43}}$等于(  )
A.125B.85C.45D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线l1:4x+3y-1=0与直线l2:8x+6y+3=0的距离为(  )
A.$\frac{2}{5}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x|x-2|.
(1)在下列方格中画出f(x)的图象;
(2)写出f(x)的单调区间,并说明函数单调性;(不必证明)
(3)若f(x)=1,求x的值.

查看答案和解析>>

同步练习册答案