精英家教网 > 高中数学 > 题目详情
在锐角三角形ABC中,角A、B、C的对边分别为a、b、c.向量u=(b2-a2-c2,3ac),v=(sinB,cosB),且uv.

(1)求角B;

(2)求sinA+sinC的最大值.

解:(1)∵uv,∴u·v=0,即(b2-a2-c2)sinB+accosB=0.

又cosB=,∴sinB=,B∈(0,).∴B=.

(2)由(1)知A+C=,∴C=-A.

∴sinA+sinC=sinA+sin(-A)=sinA+cosA+sinA=sinA+cosA=cos(A-).

又0<A<,∴-<A-.

∴当A-=0,即A=时,sinA+sinC的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角三角形ABC中,a,b,c分别是角A,B,C的对边,且a=2bsinA.
(1)求∠B的大小;
(2)若a=3
3
,c=5
,求边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角三角形ABC中,a,b,c分别为内角A,B,C所对的边,且满足
3
a-2bsinA=0

(Ⅰ)求角B的大小;
(Ⅱ)若b=
7
,c=2,求
AB
AC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角三角形ABC中,a,b,c分别是角A、B、C的对边,
p
=(a+c,b),
q
=(c-a,b-c)且
p
q

(1)求A的大小;
(2)记f(B)=2sin2B+sin(2B+
π
6
)
,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南充一模)在锐角三角形ABC中,角A,B,C对边a,b,c且a2+b2-
2
ab=c2,tanA-tanB=csc2A
①求证:2A-B=
π
2

②求三角形ABC三个角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:在锐角三角形ABC中,?A,B,使sinA<cosB;命题q:?x∈R,都有x2+x+1>0,给出下列结论:
①命题“p∧q”是真命题;           
②命题“¬p∨q”是真命题;
③命题“¬p∨¬q”是假命题;       
④命题“p∧¬q”是假命题;
其中正确结论的序号是(  )

查看答案和解析>>

同步练习册答案