精英家教网 > 高中数学 > 题目详情
8.如图,在平行四边形ABCD中,已知AB=2,AD=1,∠BAD=60°,若$\overrightarrow{DE}=2\overrightarrow{EC}$,则$\overrightarrow{AE}•\overrightarrow{BD}$=-2.

分析 根据数量积的定义计算出$\overrightarrow{AD}$•$\overrightarrow{AB}$的值,再根据$\overrightarrow{DE}=2\overrightarrow{EC}$用$\overrightarrow{AD}$、$\overrightarrow{AB}$表示出$\overrightarrow{AE}$与$\overrightarrow{BD}$,求出$\overrightarrow{AE}•\overrightarrow{BD}$即可.

解答 解:平行四边形ABCD中,AB=2,AD=1,∠BAD=60°,
∴$\overrightarrow{AD}$•$\overrightarrow{AB}$=1×2×cos60°=1,
又$\overrightarrow{DE}=2\overrightarrow{EC}$,∴$\overrightarrow{DE}$=$\frac{2}{3}$$\overrightarrow{DC}$,
∴$\overrightarrow{AE}$=$\overrightarrow{AD}$+$\overrightarrow{DE}$=$\overrightarrow{AD}$+$\frac{2}{3}$$\overrightarrow{DC}$=$\overrightarrow{AD}$+$\frac{2}{3}$$\overrightarrow{AB}$,
$\overrightarrow{BD}$=$\overrightarrow{AD}$-$\overrightarrow{AB}$,
∴$\overrightarrow{AE}•\overrightarrow{BD}$=($\overrightarrow{AD}$+$\frac{2}{3}$$\overrightarrow{AB}$)•($\overrightarrow{AD}$-$\overrightarrow{AB}$)=${\overrightarrow{AD}}^{2}$-$\frac{1}{3}$$\overrightarrow{AD}$•$\overrightarrow{AB}$-$\frac{2}{3}$${\overrightarrow{AB}}^{2}$=12-$\frac{1}{3}$×1-$\frac{2}{3}$×22=-2.
故答案为:-2.

点评 本题考查了两个向量的数量积的定义以及公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,若该几何体的表面积为16+2π,则r=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|2x-1|+|x-a|.
(1)当a=1时,解不等式f(x)≥2;
(2)若f(x)=|x-1+a|,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知是f(x)二次函数,且f(x)+f(x+1)=2x2-6x+5,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$|的部分图象如图示,现将函数y=f(x)的图象向右平移$\frac{π}{12}$个单位后,得到函数y=g(x)的图象,则平移后得到的函数解析式g(x)=sin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=-2x2+6x(-2<x≤2)的值域为(-20,$\frac{9}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数$f(x)=\frac{1}{(2x+1)(x-a)}$为偶函数,则a=(  )
A.1B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{{x}^{2}+x-2,x>1}\end{array}\right.$,则f[$\frac{1}{f(2)}$]=$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x-t)|x|(t∈R).
(1)讨论y=f(x)的奇偶性;
(2)当t>0时,求f(x)在区间[-1,2]的最小值h(t).

查看答案和解析>>

同步练习册答案