精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$|的部分图象如图示,现将函数y=f(x)的图象向右平移$\frac{π}{12}$个单位后,得到函数y=g(x)的图象,则平移后得到的函数解析式g(x)=sin2x.

分析 通过函数的图象求出A,求出函数的周期,利用周期公式求出ω,函数过($\frac{π}{6}$,1),结合φ的范围,求出φ,推出函数的解析式,通过函数图象的平移推出g(x)解析式,

解答 解:由图象知A=1,$\frac{3}{4}$T=$\frac{11π}{12}$-$\frac{π}{6}$=$\frac{3π}{4}$,T=π⇒ω=2,
由sin(2×$\frac{π}{6}$+φ)=1,|φ|<$\frac{π}{2}$,得$\frac{π}{3}$+φ=$\frac{π}{2}$,
⇒φ=$\frac{π}{6}$,
⇒f(x)=sin(2x+$\frac{π}{6}$),
则图象向右平移$\frac{π}{12}$个单位后得到的图象解析式为g(x)=sin[2(x-$\frac{π}{12}$)+$\frac{π}{6}$]=sin2x.
故答案为:sin2x.

点评 本题主要考查了学生的视图能力,函数的解析式的求法,函数y=Asin(ωx+φ)的图象变换,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.正项等比数列{an}中的a1、a11是函数f(x)=$\frac{1}{3}$x3-4x2+6x-3的极值点,则log${\;}_{\sqrt{6}}}$a5a6=(  )
A.1B.2C.$\sqrt{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示,其中点P(1,2)为函数图象的一个最高点,Q(4,0)为函数图象与x轴的一个交点,O为坐标原点.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)将函数y=f(x)的图象向右平移2个单位得到y=g(x)的图象,求函数h(x)=f(x)•g(x)图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设n∈N+,由计算得f(2)=$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(32)>$\frac{7}{2}$,观察上述结果,可推出一般的结论为f(2n)$≥\frac{n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$\overrightarrow a,\overrightarrow b$是夹角为60°的两个单位向量,则当实数t∈[-1,1],$|\overrightarrow a+t\overrightarrow b|$的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在平行四边形ABCD中,已知AB=2,AD=1,∠BAD=60°,若$\overrightarrow{DE}=2\overrightarrow{EC}$,则$\overrightarrow{AE}•\overrightarrow{BD}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列满足a1=1,an+1=2an+1(n∈N*).则通项公式为an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设A={x|x≥2$\sqrt{2}$},a=3,下列各式正确的是(  )
A.0∈AB.a∉AC.a∈AD.{a}∈A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解下列关于x的不等式:
(1)-x2+2x+1<0
(2)$\frac{3x+3}{x}≤2$.

查看答案和解析>>

同步练习册答案