精英家教网 > 高中数学 > 题目详情
5.某校举行2010年元旦汇演,如图是7位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数是85,方差为1.6.

分析 根据分数处理方法,去掉一个最高分93和一个最低分79后,把剩下的五个数字求出平均数和方差.

解答 解:这七个数据分别为:79,84,84,86,84,87,93;7个数据中去掉一个最高分和一个最低分后,余下的5个数为:84,84,86,84,87.
则平均数为:$\overline{x}$=$\frac{84+84+86+84+87}{5}$=85.
方差为:s2=$\frac{1}{5}$[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=1.6
即 s2=1.6.
故答案为:85;1.6.

点评 本题考查茎叶图、平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为$\overline{x}$,则方差S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知动直线y=-3x+b与二次函数y=-x2+2x-1,相交于A,B两不同点,弦AB的中点为Q,O为坐标原点.
(1)若|AB|=3,求b的值;
(2)求Q点的轨迹方程;
(3)若b∈[-3,-$\frac{3}{4}$),求|$\overrightarrow{OQ}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,OA是圆C的直径,且OA=2a,射线OB与圆交于Q点,和经过A点的切线交于B点,作PQ⊥OA交OA于D,PB∥OA,试求点P的轨迹的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明:f(x)=x2+$\frac{1}{x}$在(1,+∞)上为单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=3tan($\frac{1}{2}$x-$\frac{π}{4}$)的定义域是{x|x≠2kπ+$\frac{3π}{2}$,k∈Z},值域是(-∞,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=x3-lnx在x=1处的切线方程为(  )
A.2x+y-1=0B.2x+y+1=0C.2x-y-1=0D.2x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求多项式4x4+8x3-5x2-6x除以2x+3的余式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若函数f(x)=Asinx(A≠0),且${∫}_{0}^{\frac{π}{2}}$dx=f(x0),x0∈(0,π),求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx,x∈[$\root{3}{e}$,e3],函数g(x)=[f(x)]2-2a•f(x)+3的最小值为h(a).
(1)求h(a)的解析式;
(2)是否存在实数m,n,同时满足下列两个条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m,n;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案