【题目】已知椭圆的右焦点是抛物线的焦点,直线与相交于不同的两点.
(1)求的方程;
(2)若直线经过点,求的面积的最小值(为坐标原点);
(3)已知点,直线经过点,为线段的中点,求证:.
【答案】(1);(2);(3)见解析
【解析】
(1)由题意方程求出右焦点坐标,即抛物线焦点坐标,进一步可得抛物线方程;
(2)设出直线方程,与抛物线方程联立,化为关于y的一元二次方程,利用根与系数的关系求得|y1﹣y2|,代入三角形面积公式,利用二次函数求最值;
(3)分直线AB的斜率存在与不存在,证明有,可得CA⊥CB,又D为线段AB的中点,则|AB|=2|CD|.
(1)∵椭圆的右焦点为,∴, ∴的方程为.
(2)(解法1)显然直线的斜率不为零,设直线的方程为,
由,得,则,
∴当,即直线垂直轴时,的面积取到最小值,最小值为.
(解法2)若直线的斜率不存在,由,得,
的面积,
若直线的斜率存在,不妨设直线的方程为,
由,得,,且,
,
即的面积的最小值为.
(3)(解法1)∵直线的斜率不可能为零,设直线方程为,
由得,∴,
,
∴
,即,
在中,为斜边的中点,所以.
(解法2)(前同解法1)
线段的中点的坐标为,
所以.
科目:高中数学 来源: 题型:
【题目】已知直线、与平面、满足,,,则下列命题中正确的是( )
A.是的充分不必要条件
B.是的充要条件
C.设,则是的必要不充分条件
D.设,则是的既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童.此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益.据测算,首日参与活动人数为人,以后每天人数比前一天都增加,天后捐步人数稳定在第天的水平,假设此项活动的启动资金为万元,每位捐步者每天可以使公司收益元(以下人数精确到人,收益精确到元).
(1)求活动开始后第天的捐步人数,及前天公司的捐步总收益;
(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,函数的图像与函数的图像关于直线对称.
(1)求函数的解析式;
(2)若函数在区间上的值域为,求实数的取值范围;
(3)设函数,试用列举法表示集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,点,是曲线上的任意一点,动点满足
(1)求点的轨迹方程;
(2)经过点的动直线与点的轨迹方程交于两点,在轴上是否存在定点(异于点),使得?若存在,求出的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com