精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的单调区间和函数的最值;

(2)已知关于的不等式对任意的恒成立,求实数的取值范围.

【答案】1)答案不唯一,见解析;(2

【解析】

1)求导后,分两种情况考虑的单调性;利用导数求的极值即可;

2对任意的恒成立,等价于对任意的恒成立,设,利用导数研究的单调性以及最值,从而可得到结论.

1)因为,∴.

,即时,恒成立,在区间上单调递增.

,即时,令,则单调递增;令,则单调递减.

综上,当时,的单调递增区间为;当时,的单调递增区间为,单调递减区间为

因为,(

所以,所以当时,单调递增,

时,单调递减,所以,无最大值.

2对任意的恒成立,

对任意的恒成立.

,则.

时,因为,所以,所以在区间上单调递减.所以,符合题意.

时,令,得,令,得

所以在区间上单调递减,在区间上单调递增,

所以

由(1)知,即上恒成立,不符合题意.

综上,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)求函数的单调区间;

2)讨论函数零点的个数;

3)若存在两个不同的零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆运送这批水果的费用最少为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的首项为,公差为,等比数列的首项为,公比为,其中,且

1)求证:,并由推导的值;

2)若数列共有项,前项的和为,其后的项的和为,再其后的项的和为,求的比值.

3)若数列的前项,前项、前项的和分别为,试用含字母的式子来表示(即,且不含字母

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义符号函数,已知函数.

1)已知,求实数的取值集合;

2)当时,在区间上有唯一零点,求的取值集合;

3)已知上的最小值为,求正实数的取值集合;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点分别是椭圆:的左、右焦点,且椭圆上的点到点的距离的最小值为.MN是椭圆上位于轴上方的两点,且向量与向量平行.

1)求椭圆的方程;

2)当时,求△的面积;

3)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】孔子曰:温故而知新.数学学科的学习也是如此.为了调查数学成绩与及时复习之间的关系,某校志愿者展开了积极的调查活动:从高三年级640名学生中按系统抽样抽取40名学生进行问卷调查,所得信息如下:

数学成绩优秀(人数)

数学成绩合格(人数)

及时复习(人数)

20

4

不及时复习(人数)

10

6

1)张军是640名学生中的一名,他被抽中进行问卷调查的概率是多少(用分数作答);

2)根据以上数据,运用独立性检验的基本思想,研究数学成绩与及时复习的相关性.

参考公式:,其中为样本容量

临界值表:

0.25

0.15

0.10

0.05

0.025

0.010

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)试判断函数的奇偶性,并说明理由;

2)若,求上的最大值;

3)若,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点是抛物线的焦点,直线相交于不同的两点

1)求的方程;

2)若直线经过点,求的面积的最小值(为坐标原点)

3)已知点,直线经过点为线段的中点,求证:

查看答案和解析>>

同步练习册答案