精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,离心率e=
1
2

(1)求椭圆C的标准方程;
(2)若直线l与椭圆C相交于A,B两点,弦AB的中点坐标为(1,
1
2
)
,求直线l的方程.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)根据椭圆C上的点到焦点距离的最大值为3,离心率e=
1
2
,求出a,c,可求b,即可求椭圆C的标准方程;
(2)设A(x1,y1),B(x2,y2),代入椭圆方程作差,根据斜率公式、中点坐标公式即可求得斜率,再由点斜式即可求得此时直线方程;
解答: 解:(I)由题意设椭圆的标准方程为
x2
a2
+
y2
b2
=1(a>b>0)

由已知得:a+c=3,e=
c
a
=
1
2
,…(3分)
∴a=2,c=1,∴b2=a2-c2=3,
∴椭圆的标准方程为
x2
4
+
y2
3
=1
…(6分)
(2).设 A(x1,y1),B(x2,y2)则
x1+x2
2
=1,
y1+y2
2
=
1
2

3x12+4y12=12
3x22+4y22=12
,作差可得3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0…(9分)
kAB=
(y1-y2)
(x1-x2)
=
3(x1+x2)
-4(y1+y2)
=
3×2
-4×1
=-
3
2

直线l方程y-
1
2
=-
3
2
(x-1)

即3x+2y-4=0…(12分)
点评:本题考查直线与圆锥曲线的位置关系、椭圆方程的求解,凡涉及弦中点问题一般可考虑“平方差”法,即设出弦端点坐标,代入圆锥曲线方程作差,由中点坐标公式及斜率公式可得弦斜率及中点坐标关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图中的程序框图,输出的结果为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知l,m是两条不同的直线,α是一个平面,且l∥α,则下列命题正确的是(  )
A、若l∥m,则m∥α
B、若m∥α,则l∥m
C、若l⊥m,则m⊥α
D、若m⊥α,则l⊥m

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}共有n(n≥3,n∈N)项,且a1=an=1,对每个i(1≤i≤n-1,i∈N),均有
ai+1
ai
∈{
1
2
,1,2}.
(1)当n=3时,写出满足条件的所有数列{an}(不必写出过程);
(2)当n=8时,求满足条件的数列{an}的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+x-1.
(1)求f(2); 
(2)求f(
1
x
+1);
(3)若f(x)=5,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距为2,且与直线y=x-
3
相切.
(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点分别为A,B,过点P(3,0)的直线l与椭圆C交于两点M,N(M在N的右侧),直线AM,BN相交于点Q,求证:点Q在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,角α的顶点是坐标原点,始边为x轴的正半轴,终边与单位圆O交于点A(x1,y1),α∈(
π
4
π
2
).将角α终边绕原点按逆时针方向旋转
π
4
,交单位圆于点B(x2,y2).
(1)若x1=
3
5
,求x2
(2)过A,B作x轴的垂线,垂足分别为C,D,记△AOC及△BOD的面积分别为S1,S2,且S1=
4
3
S2,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-mx+m-1,若对于区间[2,
5
2
]内任意两个相异实数x1,x2,总有|f(x1)-f(x2)|≤|x1-x2|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1
x
的定义域为(-∞,0)∪(0,+∞),求f(x)在(-∞,1)上的单调性并画出函数的图象.

查看答案和解析>>

同步练习册答案