精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+x-1.
(1)求f(2); 
(2)求f(
1
x
+1);
(3)若f(x)=5,求x的值.
考点:二次函数的性质
专题:函数的性质及应用
分析:(1)利用函数的解析式代入,x=2,直接求出f(2); 
(2)利用函数的解析式用
1
x
+1,代换x,求出f(
1
x
+1);
(3)利用f(x)=5,通过解方程求x的值.
解答: 解:函数f(x)=x2+x-1.
(1)f(2)=4+2-1=5; 
(2)f(
1
x
+1)=(
1
x
+1)2+(
1
x
+1)-1=
1
x2
+
3
x
+1

(3)f(x)=5,∴x2+x-1=5,解得,x=2或x=-3.
点评:本题考查二次函数的基本性质的应用,函数的解析式的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,设A是半圆O:x2+y2=2(x≥0)上一点,直线OA的倾斜角为45°,过点A作x轴的垂线,垂足为H,过H作OA的平行线交半圆于点B,则直线AB的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
n
-
y2
12-n
=1的离心率是
3
,则n的值为(  )
A、2B、3C、4D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数y=3x2+2(a-1)x+a2,-1≤x≤1,
(1)求此函数的最小值;
(2)若函数值的最小值为13,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,2,3,4,5,6中不放回地随机抽取四个数字,记取得的四个数字之和除以4的余数为X,除以3的余数为Y
(1)求X=2的概率;
(2)记事件X=0为事件A,事件Y=0为事件B,判断事件A与事件B是否相互独立,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,离心率e=
1
2

(1)求椭圆C的标准方程;
(2)若直线l与椭圆C相交于A,B两点,弦AB的中点坐标为(1,
1
2
)
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
3
,右准线方程为x=
3
3

(1)求双曲线C的方程;
(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在以双曲线C的实轴长为直径的圆上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆C有两个不同的交点A,B,且直线OA,OB的斜率之积为
1
2
,问是否存在直线l,使△AOB的面积的值为
2
2
?若存在,求直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正数数列{an}中,Sn为an的前n项和,若点(an,Sn)在函数y=
c2-x
c-1
的图象上,其中c为正常数,且c≠1.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=
n2 nan+2
2n+1
,当c=2的时候,是否存在正整数m、n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m、n的值,若不存在,请说明理由;
(3)设数列{cn}满足cn=
n,n=2k-1
2an,n=2k
,k∈N*
,当c=
3
3
时候,在数列{cn}中,是否存在连续的三项cr,cr+1,cr+2,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数r的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案