精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,角α的顶点是坐标原点,始边为x轴的正半轴,终边与单位圆O交于点A(x1,y1),α∈(
π
4
π
2
).将角α终边绕原点按逆时针方向旋转
π
4
,交单位圆于点B(x2,y2).
(1)若x1=
3
5
,求x2
(2)过A,B作x轴的垂线,垂足分别为C,D,记△AOC及△BOD的面积分别为S1,S2,且S1=
4
3
S2,求tanα的值.
考点:直线与圆锥曲线的综合问题
专题:三角函数的求值
分析:(1)由A点的横坐标,结合OA在第一象限求得A点的纵坐标,从而得到sinα=
4
5
,cosα=
3
5
,代入两角和的余弦公式求得x2
(2)直接写出△AOC的面积S1,结合(α+
π
4
)的正弦值为正值,余弦值为负值写出△BOD的面积S2,再由S1=
4
3
S2列式求解tanα的值.
解答: 解:(1)∵x1=
3
5
,y1>0,
y1=
1-x12
=
1-(
3
5
)2
=
4
5

∴sinα=
4
5
,cosα=
3
5

x2=cos(α+
π
4
)=cosαcos
π
4
-sinαsin
π
4
=
3
5
×
2
2
-
4
5
×
2
2
=-
2
10

(2)S1=
1
2
sinαcosα
=
1
4
sin2α

∵α∈(
π
4
π
2
),
α+
π
4
∈(
π
2
4
)

S2=-
1
2
sin(α+
π
4
)cos(α+
π
4
)
=-
1
4
sin(2α+
π
2
)=-
1
4
cos2α

∵S1=
4
3
S2
sin2α=-
4
3
cos2α
,即tan2α=-
4
3

2tanα
1-tan2α
=-
4
3
,解得:tanα=2或tanα=-
1
2

∵α∈(
π
4
π
2
),
∴tanα=2.
点评:本题考查直线与圆的综合,考查了三角函数的化简求值,解答的关键是理解并熟练运用三角函数线,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若loga
12
a-1
<1,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数y=3x2+2(a-1)x+a2,-1≤x≤1,
(1)求此函数的最小值;
(2)若函数值的最小值为13,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,离心率e=
1
2

(1)求椭圆C的标准方程;
(2)若直线l与椭圆C相交于A,B两点,弦AB的中点坐标为(1,
1
2
)
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
3
,右准线方程为x=
3
3

(1)求双曲线C的方程;
(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在以双曲线C的实轴长为直径的圆上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解某校今年高三男生的身体状况,随机抽查了部分男生,将测得的他们的体重(单位:千克)数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(1)求该校随机抽查的部分男生的总人数;
(2)以这所学校的样本数据来估计全市的总体数据,若从全市高三男生中任选三人,设X表示体重超过55千克的学生人数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆C有两个不同的交点A,B,且直线OA,OB的斜率之积为
1
2
,问是否存在直线l,使△AOB的面积的值为
2
2
?若存在,求直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3x2-12x+5,当f(x)的定义域为[0,a]时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N (异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).

查看答案和解析>>

同步练习册答案