| A. | 36π | B. | 64π | C. | 144π | D. | 256π |
分析 当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,利用三棱锥O-ABC体积的最大值为$\frac{{16\sqrt{3}}}{3}$,求出半径,即可求出球O的表面积.
解答
解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,设球O的半径为R,此时VO-ABC=VC-AOB=$\frac{1}{3}×\frac{1}{2}{R}^{2}×\frac{\sqrt{3}}{2}$×R=$\frac{{16\sqrt{3}}}{3}$,
故R=4,则球O的表面积为4πR2=64π,
故选B.
点评 本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大是关键.
科目:高中数学 来源: 题型:选择题
| A. | S5 | B. | S6 | C. | S7 | D. | S8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+2y-3=0 | B. | 2x+y-3=0 | C. | 2x+y-1=0 | D. | 2x-y-1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com