【题目】有下列四个说法:
①已知向量, ,若与的夹角为钝角,则;
②先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,再将所得函数图象整体向左平移个单位,可得函数的图象;
③函数有三个零点;
④函数在上单调递减,在上单调递增.
其中正确的是__________.(填上所有正确说法的序号)
科目:高中数学 来源: 题型:
【题目】若定义在R上函数的图象关于图象上点(1,0)对称,f(x)对任意的实数x都有且f(3)=0,则函数y=f(x)在区间上的零点个数最少有( )
A.2020个B.1768个C.1515个D.1514个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点坐标为别为,,离心率是. 椭圆的左、右顶点分别记为,.点是椭圆上位于轴上方的动点,直线,与直线分别交于,两点.
(Ⅰ)求椭圆的方程.
(Ⅱ)求线段长度的最小值.
(Ⅲ)当线段的长度最小时,在椭圆上的点满足:的面积为.试确定点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量,,,,函数,的最小正周期为.
(1)求的单调增区间;
(2)方程;在上有且只有一个解,求实数n的取值范围;
(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin ωx·cos ωx+ cos2ωx-
(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为 .
(Ⅰ)求f(x)的表达式;
(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某产品的年固定成本为250万元,每生产千件,需另投入成本(万元),若年产量不足千件, 的图像是如图的抛物线,此时的解集为,且的最小值是,若年产量不小于千件, ,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,过的直线交轴正半轴于点,交抛物线于两点,其中点在第一象限.
(Ⅰ)求证:以线段为直径的圆与轴相切;
(Ⅱ)若,,,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com