分析 由已知,得到x-2∈[1,2],满足第一段的范围,又不等式有解,由此将不等式转化为f(ax-1)>1+lg2,进一步讨论ax-1的范围,解对数不等式即可.
解答 解:因为不等式f(ax-1)>f(x-2)在[3,4]上有解,所以x-2∈[1,2],
∴f(ax-1)>[lg(x-1)+1]min=1+lg2,
∴$\left\{\begin{array}{l}{ax-1≥0}\\{lg(ax)+1>1+lg2}\end{array}\right.$或$\left\{\begin{array}{l}{ax-1<0}\\{lg(2-ax)+1>1+lg2}\end{array}\right.$,
解得ax>2或ax<0,
∴a>$\frac{2}{3}$或a<0.
点评 本题考查了分段函数以及对数不等式的解法;关键是将抽象不等式转化为具体的对数不等式.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sinA)>f(cosA) | B. | f(sinA)>f(cosB) | C. | f(sinC)<f(cosB) | D. | f(sinC)>f(cosB) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (1,+∞) | C. | (0,1) | D. | (0,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com