精英家教网 > 高中数学 > 题目详情
3.判断函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{-{x}^{2},x<0}\end{array}\right.$的奇偶性.

分析 根据函数奇偶性的定义进行判断即可.

解答 解:如x>0,则-x<0,
则f(-x)=-(-x)2=-x2=-f(x),
若x<0,则-x>0,
则f(-x)=(-x)2=x2=-f(x),
当x=0时,f(0)=0,
综上f(-x)=-f(x),
则函数f(x)为奇函数.

点评 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,ABCD-A1B1C1D1是棱长为a的正方体.求证:
(1)D${\;}_{{1}_{\;}}$B⊥AC;
(2)BC1⊥平面A1B1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2-2ax+2(a∈R).
(1)若函数f(x)在(-∞,2)上单调递减,求实数a的取值范围;
(2)求函数f(x)在[-1,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x∈R|log2(x-1)<2},B={x∈R||3x-b|<4}.
(Ⅰ)若A∪B=A,求实数b的取值范围;
(Ⅱ)若集合B∩N*={1,2,3},求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2x-$\frac{a}{x}$,且f(1)=3.
(1)求a的值;
(2)判断函数的奇偶性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若向量$\overrightarrow{OP}$=(3+t)$\overrightarrow{i}$+(1+2t)$\overrightarrow{j}$.则|$\overrightarrow{OP}$|的最小值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{2,x∉[-2,2]}\\{|x|,x∈[-2,2]}\end{array}\right.$,则其最小值为(  )
A.2B.0C.-2D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)是定义在R上的增函数,如果不等式f(ax2+x-2)<f(x2-x+1)对于任意x∈[$\frac{3}{2}$,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知A={(x,y)|x2+y2≤1},B={(x,y)|x≤4,y≥0,3x-4y≥0},则Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示区域的面积为18+π.

查看答案和解析>>

同步练习册答案