精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x-1+
a
ex
(a∈R,e为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a;
(Ⅱ)求f(x)的极值.
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(1)求出函数的导数,由两直线平行的条件得,f′(1)=0,即可求出a;
(2)求出导数,对a讨论,分a≤0,a>0,求出单调区间,即可得到函数的极值.
解答: 解:(1)函数f(x)=x-1+
a
ex
的导数f′(x)=1-
a
ex

∵曲线y=f(x)在点(1,f(1))处的切线平行于x轴,
∴f′(1)=0,即1-
a
e
=0,
∴a=e;
(2)导数f′(x)=1-
a
ex

①当a≤0时,f′(x)>0,f(x)是R上的增函数,无极值;
②当a>0时,ex>a时即x>lna,f′(x)>0;
ex<a,即x<lna,f′(x)<0,
故x=lna为f(x)的极小值点,且极小值为lna-1+1=lna,无极大值.
综上,a≤0时,f(x)无极值;a>0时,f(x)有极小值lna,无极大值.
点评:本题主要考查导数在函数中的综合应用,求切线方程和求极值,同时考查分类讨论的思想方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求证:二次函数y=ax2+bx+c的图象与x轴交于(1,0)的充要条件为a+b+c=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

分别求圆x2+y2=1过下列点的切线方程:
(1)(-1,0);
(2)(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,S3=21,a3n=a2n+an+1,n∈N*
(1)求数列{an}的通项公式;
(2)若存在常数k,使不等式k≥
an+1
Sn+8
(n∈N*)恒成立,求k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上临睡前背.为研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排粪型进行分层抽样,并完成一项实验,实验方法是,使两组学生记忆40个无意义音节(如xIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验.不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不舍右端点)

(1)估计1000名被调查的学生中识记停止后8小时40个音节的保持率大于等于60%的人数;
(2)从乙组准确回忆结束在|12,24)范围内的学生中随机选3人,记能准确回忆20个以上(含20)的人数为随机变量x.求X分布列及数学期望;
(3)从本次实验的结果来看,上述两种时间安排方法中哪种方法背英语单词记忆效果更好?计算并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为
1
2
1
3
,求:
(1)甲、乙两人至少有一个人破译出密码的概率;
(2)两人都没有破译出密码的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|y=log2(-x2-2x+8)},B={y|y=x+
1
x-1
-2},集合C={x|(ax-
1
a
)(x+4)≤0}.
(1)求A∩B;
(2)若C⊆∁RA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上两动点,F1,F2分别为其左右焦点,直线AB过点F2(c,0),且不垂直于x轴,△ABF1的周长为8,且椭圆的短轴长为2
3

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点P为椭圆C的左端点,连接PA并延长交直线l:x=4于点M.求证:直线BM过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z=cosθ-sinθi所对应的点在第四象限,则θ为第
 
象限角.

查看答案和解析>>

同步练习册答案