精英家教网 > 高中数学 > 题目详情
12.四棱锥P-ABCD中,底面ABCD是矩形,∠PCD=90°,二面角P-CD-B为60°,BC=1,AB=PC=2.
(1)求证:平面PAB⊥平面ABCD;
(2)求点C到平面PAD的距离.

分析 (1)推导出AB⊥CB,PC⊥CD,CD⊥PB,从而∠PCB=60°,进而PB=$\sqrt{3}$,推导出PB⊥BC,AB⊥CB,由此能证明平面PAB⊥平面ABCD.
(2)以B为原点,BC为x轴,BA为y轴,BP为z轴,建立空间直角坐标系,利用向量法能求出点C到平面PAD的距离.

解答 证明:(1)∵四棱锥P-ABCD中,底面ABCD是矩形,
∴BC⊥CD,AB∥CD,AB⊥CB,
∵∠PCD=90°,∴PC⊥CD,
∵PC∩CB=C,∴CD⊥平面PBC,
∵PB?平面PBC,∴CD⊥PB,
∴∠PCB是二面角P-CD-B的平面角,
∵二面角P-CD-B为60°,BC=1,AB=PC=2.
∴∠PCB=60°,∴PB=$\sqrt{4+1-2×2×1×cos60°}$=$\sqrt{3}$,
∴PB2+BC2=PC2,∴PB⊥BC,
又AB⊥CB,PB∩AB=B,∴BC⊥面PAB,
∵BC?平面ABCD,∴平面PAB⊥平面ABCD.
解:(2)以B为原点,BC为x轴,BA为y轴,BP为z轴,建立空间直角坐标系,
C(1,0,0),P(0,0,$\sqrt{3}$),A(0,2,0),D(1,2,0),
$\overrightarrow{PC}$=(1,0,-$\sqrt{3}$),$\overrightarrow{PA}$=(0,2,-$\sqrt{3}$),$\overrightarrow{PD}$=(1,2,-$\sqrt{3}$),
设平面PAD的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PA}=2y-\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{PD}=x+2y-\sqrt{3}z=0}\end{array}\right.$,取z=2,得$\overrightarrow{n}$=(0,$\sqrt{3}$,2),
∴点C到平面PAD的距离:
d=$\frac{|\overrightarrow{PC}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{2\sqrt{3}}{\sqrt{7}}$=$\frac{2\sqrt{21}}{7}$.

点评 本题考查面面垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知等比数列{an}的公比q=2,其前4项和S4=60,则a3等于(  )
A.16B.8C.-16D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设A,B分别是直线y=$\frac{{2\sqrt{5}}}{5}$x和y=-$\frac{{2\sqrt{5}}}{5}$x上的动点,且|AB|=2$\sqrt{5}$,设O为坐标原点,动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)斜率为1不经过原点O,且与动点P的轨迹相交于C,D两点,M为线段CD的中点,直线CD与直线OM能否垂直?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\frac{2x}{{{x^2}+1}}$,则下列说法正确的是(  )
A.函数f(x)在(0,+∞)上有最小值B.函数f(x)在(0,+∞)上没有最大值
C.函数f(x)在R上没有极小值D.函数f(x)在R上有极大值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.抛物线y2=2x的焦点到准线的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an}的首项a1=1,公比为q,试就q的不同取值情况,讨论二元一次方程组$\left\{\begin{array}{l}{a_1}x+{a_3}y=3\\{a_2}x+{a_4}y=-2\end{array}\right.$何时无解,何时有无穷多解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到平行四边形ABCD的面积为S.
(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|x1y2-x2y1|.
(2)设l1与l2的斜率之积为$-\frac{1}{2}$,求面积S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{p}{2}{x^2}-lnx({p∈R})$.
(1)当p=2时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)当p>1时,求证:$({p-1})x-f(x)<\frac{{3{e^{p-3}}}}{2p-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题:“?x∈R,x2+mx+2≤0”为假命题,是命题|m-1|<2的(  )
A.充分不必要条件B.必要非充分条件C.充要条件D.都不是

查看答案和解析>>

同步练习册答案