分析 (1)推导出AB⊥CB,PC⊥CD,CD⊥PB,从而∠PCB=60°,进而PB=$\sqrt{3}$,推导出PB⊥BC,AB⊥CB,由此能证明平面PAB⊥平面ABCD.
(2)以B为原点,BC为x轴,BA为y轴,BP为z轴,建立空间直角坐标系,利用向量法能求出点C到平面PAD的距离.
解答 证明:(1)∵四棱锥P-ABCD中,底面ABCD是矩形,![]()
∴BC⊥CD,AB∥CD,AB⊥CB,
∵∠PCD=90°,∴PC⊥CD,
∵PC∩CB=C,∴CD⊥平面PBC,
∵PB?平面PBC,∴CD⊥PB,
∴∠PCB是二面角P-CD-B的平面角,
∵二面角P-CD-B为60°,BC=1,AB=PC=2.
∴∠PCB=60°,∴PB=$\sqrt{4+1-2×2×1×cos60°}$=$\sqrt{3}$,
∴PB2+BC2=PC2,∴PB⊥BC,
又AB⊥CB,PB∩AB=B,∴BC⊥面PAB,
∵BC?平面ABCD,∴平面PAB⊥平面ABCD.
解:(2)以B为原点,BC为x轴,BA为y轴,BP为z轴,建立空间直角坐标系,
C(1,0,0),P(0,0,$\sqrt{3}$),A(0,2,0),D(1,2,0),
$\overrightarrow{PC}$=(1,0,-$\sqrt{3}$),$\overrightarrow{PA}$=(0,2,-$\sqrt{3}$),$\overrightarrow{PD}$=(1,2,-$\sqrt{3}$),
设平面PAD的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PA}=2y-\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{PD}=x+2y-\sqrt{3}z=0}\end{array}\right.$,取z=2,得$\overrightarrow{n}$=(0,$\sqrt{3}$,2),
∴点C到平面PAD的距离:
d=$\frac{|\overrightarrow{PC}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{2\sqrt{3}}{\sqrt{7}}$=$\frac{2\sqrt{21}}{7}$.
点评 本题考查面面垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)在(0,+∞)上有最小值 | B. | 函数f(x)在(0,+∞)上没有最大值 | ||
| C. | 函数f(x)在R上没有极小值 | D. | 函数f(x)在R上有极大值 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com