精英家教网 > 高中数学 > 题目详情
12.曲线C1的参数方程为$\left\{\begin{array}{l}x=\sqrt{10}cosθ\\ y=sinθ\end{array}$(θ为参数),圆C2:x2+(y-6)2=2,设P,Q分别为曲线C1和圆C2上的点,则P,Q两点间的最大距离是(  )
A.5$\sqrt{2}$B.$\sqrt{46}$+$\sqrt{2}$C.7+$\sqrt{2}$D.6$\sqrt{2}$

分析 利用两点间距离公式求出P到圆C2的圆心距离的最大值,转化求解的距离即可.

解答 解:曲线C1的参数方程为$\left\{\begin{array}{l}x=\sqrt{10}cosθ\\ y=sinθ\end{array}$(θ为参数),圆C2:x2+(y-6)2=2,圆心(0,6),半径为:$\sqrt{2}$,P,Q分别为曲线C1和圆C2上的点,则P,Q两点间的最大距离是P到圆心的距离与圆的半径的和,
P到圆C2的圆心的距离:$\sqrt{{(\sqrt{10}cosθ)}^{2}+{(sinθ-6)}^{2}}$=$\sqrt{10{cos}^{2}θ+{sin}^{2}θ-12sinθ+36}$=$\sqrt{-9{sin}^{2}θ-12sinθ+46}$=$\sqrt{-(3sinθ-2)^{2}+50}$$≤5\sqrt{2}$.
则P,Q两点间的最大距离是:6$\sqrt{2}$.
故选:D.

点评 本题考查曲线与方程的综合应用,参数方程的应用,三角函数的化简求值,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=2sin(ωx+φ)(ω>0,一$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则(  )
A.函数f(x)的最小正周期是2π
B.函数f(x)的图象可由函数g(x)=2sin2x的图象向右平移$\frac{π}{3}$个单位长度得到
C.函数f(x)的图象关于直线x=一$\frac{π}{12}$对称
D.函数f(x)在区间[-$\frac{7π}{12}$+kπ,-$\frac{π}{12}$+kπ](k∈Z)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=1+a•\frac{1}{2^x}+\frac{1}{4^x}$.
(1)当a=1时,求函数f(x)在(-∞,0)上的值域;
(2)若对任意x∈[0,+∞),总有f(x)<3成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知“x>k”是“$\frac{3}{x+1}<1$”的充分不必要条件,则k的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=6-x-x2的单调递减区间是(  )
A.$[-\frac{1}{2},+∞)$B.$[-\frac{1}{2},2)$C.$(-∞,-\frac{1}{2}]$D.(-3,$-\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=4x5+3x3+2x+1,则$f({log_2}3)+f({log_{\frac{1}{2}}}3)$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过点P(-1,0)作曲线C:y=ex的切线,切点为T1,设T1在x轴上的投影是点H1,过点H1再作曲线C的切线,切点为T2,设T2在x轴上的投影是点H2,依次下去,得到第n+1(n∈N)个切点Tn+1,则点T2015的坐标为(2014,e2014).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线$\frac{{x}^{2}}{3}$-y2=1的离心率互为倒数,且直线x-y-2=0经过椭圆的右顶点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线y=a分别与曲线y=2(x+1),y=x+lnx交于A、B,则|AB|的最小值为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案