精英家教网 > 高中数学 > 题目详情
3.下列命题中的真命题是(  )
A.?x0∈R,使得${e^{x_0}}≤0$B.?x∈R,x2+1<3x
C.?x0∈R,使得|x0-3|+|x0-1|<2D.?x>0,x+$\frac{4}{x}$≥4

分析 直接利用指数函数的性质判断A的正误;反例判断B、C的正误.基本不等式判断D 的正误.

解答 解:由指数函数的性质,函数的值域大于0,可知A不正确;
x=4时,x2+1<3x不成立,所以B不正确;
x0=5时,|x0-3|+|x0-1|=6,所以C不正确;
x>0,x+$\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,当且仅当x=2时,等号成立.所以D正确.
故选:D.

点评 本题考查命题的真假的判断,指数函数的性质,基本表达式以及反例判断法的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设f(x)=$\left\{\begin{array}{l}{{x}^{2},x<a}\\{2a,x=a}\\{3x-2,x>a}\end{array}\right.$,试确定常数a,使f(x)在x=a处连续.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线与圆x2+y2-4x+1=0有公共点,则该双曲线离心率的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在等比数列{an}中,a1=2,前3项的和为S3=6,则公比为1或-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直角梯形ABCD中,∠A=∠B=90°,AD∥BC,AB=AD=1,BC=2,把直角梯形ABCD绕AB所在直线旋转一周得到一个旋转体,则旋转体的体积为$\frac{7}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{lnx+k}{x}$在(0,+∞)存在最大值,且最大值为1.
(1)求实数k的值;
(2)若不等式f′(x)>$\frac{1}{4}$a-$\frac{2a+1}{2x}$在(0,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱A1B1C1中,四边形ABB1A1和ACC1A1都为矩形.
(Ⅰ)设D是AB的中点,证明:直线BC1∥平面A1DC;
(Ⅱ)在△ABC中,若AC⊥BC,证明:直线BC⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数f(x)=ax+log4(4x+1)为偶函数,则a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆O:x2+y2=1和直线l:x=3,在x轴上有一点Q(1,0),在圆O上有不与Q重合的两动点P、M,设直线MP斜率为k1,直线MQ斜率为k2,直线PQ斜率为k3
(1)若k1k2=-1
①求出点P的坐标;
②MP交l与P′,MQ交l与Q′.求证:以P′Q′为直径的圆,总过定点,并求出定点的坐标;
(2)若k2k3=2,判断直线PM是否经过定点,若有,求出来;若没有,请说明理由.

查看答案和解析>>

同步练习册答案